ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안 치료방법 간 임상효과 비교연구

2015. 12. 31
주 의

1. 이 연구는 한국보건의료연구원 연구윤리심의위원회 승인(NECA IRB 15-001)을 받은 연구사업입니다.

2. 이 보고서는 2015년도 정부(보건복지부)의 재원으로 한국보건의료연구원에서 수행한 연구사업(논제번호: NA15-001)의 결과보고서로 한국보건의료연구원 연구기획관리위원회 또는 연구심의위원회의 심의를 받았습니다.

3. 이 보고서 내용을 신문, 방송, 참고문헌, 세미나 등에 인용할 때에는 반드시 한국보건의료연구원에서 시행한 연구사업의 결과임을 밝혀야 하며, 연구내용 중 문의사항이 있을 경우에는 연구책임자 또는 주관부서에 문의하여 주시기 바랍니다.
연구 진
연구책임자

박동아 한국보건의료연구원 의료기술평가연구팀 연구위원

참여연구원

이나래 한국보건의료연구원 의료기술평가연구팀 주임연구원
이진이 한국보건의료연구원 보건의료안전연구팀 부연구위원
박지정 한국보건의료연구원 의료기술평가연구팀 연구원
손수영 한국보건의료연구원 의료기술평가연구팀 연구원
백경란 삼성서울병원 감염내과 교수
문수연 강동경희대병원 감염내과 임상부교수
주은정 강북삼성병원 감염내과 임상조교수
최재기 부천성모병원 감염내과 임상강사
고재훈 삼성서울병원 감염내과 임상강사
차 례

요약문 ... i
Executive Summary ... vi

Ⅰ. 서론 .. 1
 1. 연구배경 및 필요성 ... 1
 2. 선행 연구 .. 3
 3. 연구 목적 .. 8

Ⅱ. 연구 방법 ... 9
 1. 체계적 문헌고찰 ... 9
 2. 후향적 코호트 분석 .. 15

Ⅲ. 연구 결과 ... 24
 1. 체계적 문헌고찰 ... 24
 2. 후향적 코호트 분석 .. 88

Ⅳ. 고찰 .. 122
 1. 연구결과 요약 ... 122
 2. 연구의 의의 .. 125
 3. 연구의 제한점 및 후속연구 제안 127
 4. 결론 및 제언 ... 129

Ⅴ. 참고문헌 .. 130

Ⅵ. 부록 ... 134
표 차례

표 1. 선행 체계적 문헌고찰(Vardakas 등, 2012)의 세부 연구 결과 요약표 ... 3
표 2. 체계적 문헌고찰 핵심질문 .. 9
표 3. PICO-TS 세부 내용 .. 10
표 4. 문헌 선택/배제 기준 .. 12
표 5. 하위군 분석 내용 ... 14
표 6. 균혈증환자 선정제외 기준 ... 15
표 7. 균혈증 수집변수 ... 16
표 8. 균혈증 결과변수의 정의 ... 17
표 9. 상부요로감염환자 선정제외 기준 .. 19
표 10. 요로감염 수집변수 ... 20
표 11. 요로감염 결과변수의 정의 .. 21
표 12. 균혈증 선정문헌 특성 .. 27
표 13. 균혈증 경험적 요법에서 사망률 결과지표 분석결과 요약 ... 54
표 14. 균혈증 경험적 요법에서 문헌별 기타 결과변수 요약 ... 55
表 15. 균혈증 확정적 요법에서 사망률 지표 분석결과 요약 ... 76
表 16. 균혈증 확정적 요법에서 문헌별 기타 결과변수 요약 ... 78
表 17. 요로감염 선정문헌 특성 ... 81
表 18. 요로감염 중재법의 세부 특성 ... 83
表 19. 요로감염 미생물학적 치료 성공의 정의 ... 83
表 20. 요로감염 임상적 치료 성공의 정의 ... 86
表 21. 균혈증 대상자에서 병원체에 따른 항생제 감수성 결과 .. 91
表 22. 균혈증 선정화에서 치료유형에 따른 항생제 사용현황 ... 92
表 23. 균혈증 확정적 코호트에서 경험적 요법 항생제 사용 빈도에 따른 항생제 사용 현황 96
表 24. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 일반적 특성 및 임상적 특성 98
表 25. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 항생제 사용 성공 비율(카바페넴군 vs. 비카바페넴군) ... 100
表 26. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 치료결과 ... 100
表 27. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 생존분석결과 ... 100
表 28. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 냉각에서의 비교분석결과 100
表 29. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 항생제 사용 정보 .. 103
表 30. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 항생제 사용 정보 .. 105
表 31. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 치료결과 ... 107
表 32. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 생존분석결과 ... 108
表 33. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 냉각에서의 비교분석결과(30일 사망률) · 109
표 34. 요로감염 대상자에서 병원체에 따른 항생제 감수성 결과
표 35. 요로감염 대상자에서 치료유형에 따른 항생제 사용현황
표 36. 요로감염 환자에서 병원체에 따른 항생제 감수성 결과
표 37. 요로감염 치료방법에 따른 치료결과
표 38. 요로감염 치료방법에 따른 치료결과
표 39. 요로감염 치료방법에 따른 치료결과

그림 차례

그림 1. 국외 지역별 ESBL 생성 감염 빈도(2004-2006)
그림 3. 균혈증 환자의 대상 모집 설계
그림 4. 요로감염 환자의 대상 모집 설계
그림 5. 균혈증 문헌고찰 흐름도
그림 6. 균혈증 비혈청 위험 그래프
그림 7. 균혈증 비혈청 위험 평가결과요약
그림 8. 균혈증 경험적 요법에서 카테라스균과 비카테라스균의 전체 사망률 비교
그림 9. 균혈증 경험적 요법에서 카테라스균과 비카테라스균의 전체 사망률 비교의 contour-enhanced funnel plot
그림 10. 균혈증 경험적 요법에서 카테라스균과 비카테라스균의 전체 사망률 비교의 contour-enhanced funnel plot
그림 11. 균혈증 경험적 요법에서 카테라스균과 BL/BLIs군의 전체 사망률 비교
그림 12. 균혈증 경험적 요법에서 카테라스균과 BL/BLIs군 전체 사망률 비교의 contour-enhanced funnel plot
그림 13. 균혈증 경험적 요법에서 카테라스균과 non-BL/BLIs군의 전체 사망률 비교
그림 14. 균혈증 경험적 요법에서 카테라스균과 non-BL/BLIs군 전체 사망률 비교의 contour-funnel plot
그림 15. 균혈증 경험적 요법에서 카테라스균과 Cephalosporins군의 전체 사망률 비교
그림 16. 균혈증 경험적 요법에서 카테라스균과 Cephalosporins군의 전체 사망률 비교의 contour-funnel plot
그림 17. 균혈증 경험적 요법에서 카테라스균과 Cephalosporins군의 전체 사망률 비교의 contour-funnel plot
그림 18. 균혈증 경험적 요법에서 카테라스균과 Cephalosporins군 전체 사망률 비교의 contour-enhanced funnel plot
그림 19. 균혈증 경험적 요법에서 카테라스균과 Quinolones군의 전체 사망률 비교
그림 20. 균혈증 경험적 요법에서 카테라스균과 Quinolones군 전체 사망률 비교의 contour-funnel plot
그림 21. 균혈증 경험적 요법에서 카테라스균과 Aminoglycosides군의 전체 사망률 비교
그림 22. 균혈증 경험적 요법에서 카테라스균과 비카테라스균의 7일 사망률 비교
그림 23. 균혈증 경험적 요법에서 카테라스균과 BL/BLIs군의 7일 사망률 비교
그림 24. 균혈증 경험적 요법에서 카테라스균과 비카테라스균의 균혈증 관련 사망률 비교
그림 25. 균혈증 예방적 경험적 요법에서 카테라스균과 Cephalosporins군의 균혈증 관련 사망률 비교
요약문(국문)

☐ 연구 배경

ESBL (Extended-Spectrum Beta-Lactamase) 생성 장내세균(Enterobacteriaceae)은 보건의료 관련 감염과 상당히 관련성이 높으며 광범위 베타 락탐제에 내성이 있는 그람 음성 세균 유병율은 지난 10년에 걸쳐 빠르게 증가하고 있다. ESBL 생성 세균 감염 질환에서 현재는 카바페넴(carbapenem)이 선택 치료제로 고려되고 있으나 카바페넴 사용 증가는 카바페넴 내성을 가진 장내세균(Carbapenem-Resistant Enterobacteriaceae, CRE)의 출현을 가져왔다. 카바페넴의 광범위한 사용은 CRE 출현을 증가시키는 원인이 되며 치료 실패 대안으로 사용할 수 있는 약제가 부족하게 되므로 적절한 카바페넴의 사용이 필요하다. 최근 일부 연구를 통해 기타 항생제(BL/BLIs, aminoglycoside, 4세대 cephalosporines, quinolones 등)가 카바페넴의 대안으로 고려될 수 있는 것으로 보고되고 있으나 그 효과에 대한 분석은 제한적으로 카바페넴 이외의 대안항생제의 효과에 대한 연구의 필요성이 지속적으로 대두되고 있다.

☐ 연구 목적

본 연구에서는 ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 기타 대안 항생제간의 임상적 효과성을 평가하기 위하여 최근까지의 임상연구 문헌을 체계적으로 고찰하고 국내 다기관 환자자료를 이용하여 국내 임상효과를 비교 분석하고자 한다.

☐ 연구 방법

체계적 문헌고찰

ESBL 생성 장내세균에 의한 균혈증 및 요로감염 환자에서 카바페넴 항생제 치료법과 기타 항생제 치료법을 비교하여 임상적 안전성 및 효과성의 결과가 어떠한지 평가하기 위해 체계적 문헌고찰을 수행하였다. 문헌검색은 국외의 3개 데이터베이스 (OvidMedline, OvidEMBASE, Cochrane library)와 국내의 7개 데이터베이스 (KoreaMed, KMbase, KISS, RISS, KisTi, 국립중앙도서관, 국회도서관)를 사용하였다. 동 체계적 문헌고찰에 선정된 문헌은 모두 비무작위 비교임상연구 및 관찰연구였기 때문 에 RoBANS version2를 이용하여 문헌의 비둘림 위험을 평가하였다. 질 평가 후 최종 선정문헌의 치료효과크기를 추출하여 각 관심 의료결과에 대한 메타분석을 수행하였다.
후향적 코호트 분석

ESBL 생성 장내세균에 의한 균혈증 및 상부 요로감염 환자에서 항생제 사용 및 미생물검사 현황을 조사하고, 카바페넴과 대안 항생제 요법(비카바페넴, BL/BLIs)간 임상적 안전성 및 효과성 비교분석하기 위하여 서울 및 경기 소재 4개 의료기관에서 후향적으로 의무기록 자료를 수집하여 환자자료를 구축하였다. 균혈증에서의 1차 결과지표는 30일 이내 사망률, 상부요로감염에서의 1차 결과지표는 조기 임상적 관해율이었다. 항생제 사용방법의 선택 및 결과에 있어 환자의 임상적 특성이 영향을 줄 수 있으므로, 본 연구의 선정/제외 기준에 부합하는 전체대상자 대상 기본분석과 환자의 임상적 특성을 ‘표준화된 역확률 가중치(stabilized Inverse Probability of Treatment Weighting, stabilized IPTW)’ 방법으로 보정하여 두 치료군을 비교하는 분석을 함께 시행하였다.

□ 연구 결과

* ESBL 양성 장내세균 균혈증 환자에서 경험적 요법으로 카바페넴이 우월하다는 근거는 명확히 확인되지 않았으며, 적절한 요법으로는 non-BL/BLIs (특히, cephalosporines)에 비해 카바페넴 사용이 전체 사망 위험 감소와 관련이 있을 수 있는 것으로 나타남. 요로감염에서는 카바페넴 사용에 따른 효과에 대해 명확히 결론내릴 만한 근거가 부족하였음.
* 국내 다기관 환자자료 분석결과, ESBL 양성 장내세균 균혈증에서 경험적 요법으로 사용된 카바페넴 사용여부에 대한 30일 생존율에서의 성향점수 가중치 적응 전후 분석 모두에서 군간(카바페넴 vs. 비카바페넴, 카바페넴 vs. BL/BLIs) 유의한 차이가 없었음. ESBL 양성 장내세균 생성장내세균에서 조기 임상적 관해율에 대한 성향점수 가중치 전후 분석 모두에서 경험적 요법으로의 카바페넴 사용과 비카바페넴 사용군간 유의한 차이는 없었음

I. 균혈증

1. 체계적 문헌고찰

본 연구의 선정기준에 따라 ESBL 생성 장내세균에 의한 균혈증 환자에서 카바페넴과 기타 항생제간의 임상적 효과 비교에 최종적으로 선택된 문헌은 총 31편(환자수 4,337명)이었다. 포함된 연구는 모두 코호트 연구이며 대부분 후향적 코호트 연구이었으며 카바페넴과 기타항생제를 비교하기 위해 설계된 연구가 아닌 위험요인 등을 규
명하는 연구였다. 문헌의 비둘림 위험 평가결과, 선택비둘림 영역인 대상군 비교가능성과 대상군 선정, 교란변수 영역에서 비둘림 위험이 높게 평가되었다.

(1) 경험적 요법
카바페넴과 비카바페넴군간의 전체사망률에 대한 메타분석 결과 통계적으로 유의한 차이가 없었으며(OR=0.84, 95% CI 0.54-1.32). 문헌간 통계적 이질성은 유의하게 나타났다(Chi²=42.89, df=17, P=0.0005, I²=60%). 약제간 비교설계 여부, 감수성에 따른 적절한 항생제 사용 여부 등의 하위그룹분석 수행결과 역시 통계적으로 유의한 차이는 없는 것으로 분석되었다. 그 외 카바페넴과 비카바페넴 계열(BL/BLIs, non-BL/BLIs, cephalosporins, quinolones, aminoglycoside)에 따른 각각의 메타분석 결과에서도 통계적으로 유의한 차이는 없는 것으로 나타났다.

(2) 확정적 요법
카바페넴과 비카바페넴군간 전체사망률에 대한 메타분석 결과 통계적으로 유의한 차이가 없었으며(OR=0.70, 95% CI 0.48-1.04, I²=36%). 약제간 비교설계 여부, 감수성에 따른 적절한 항생제 사용 여부 등의 하위군 분석결과 역시 통계적으로 유의한 차이는 없는 것으로 나타났다.
카바페넴과 비카바페넴 계열에 따른 메타분석 결과 cephalosporins과의 비교에서 카바페넴군의 사망확률이 62%가량 낮게 나타났으며(OR=0.38, 95% CI 0.22-0.65, I²=32%). non-BL/BLIs과의 비교에서도 카바페넴군에서의 사망확률이 낮아지는 것으로 분석되었다(OR=0.65, 95% CI 0.43-0.99, I²=33%). 그 외 비카바페넴 계열(BL/BLIs, quinolones, aminoglycoside)에서는 통계적으로 유의한 차이는 없는 것으로 나타났다.

2. 후향적 코호트연구
본 연구의 선정제외 기준에 부합하는 최종 분석 대상자는 총 554명이었다. 이들의 항생제 감수성 결과를 확인한 결과 카바페넴에서의 감수성이 95% 이상으로 가장 높은 것으로 나타났으며, tigecycline, amikacin, piperacillin-tazobactam 등이 비교적 높은 감수성을 보였다. 확정적 요법으로 카바페넴을 사용한 대상자들 중 경험적 카바페넴 사용여부에 따른 30일 생존율에 대한 분석 결과 성향점수가증치 진행, 후 모두에서 카바페넴과 비카바페넴군간 유의한 차이가 없는 것으로 나타났다. 연령, 감염경로, 48시간 이내 중환자실 입실전실, 감염병소, APACHE II, 간 절환, 폐 절환, 신 절환, 당뇨 등 사망

iii
에 영향을 미치는 교란변수들을 보정한 다변량 분석결과에서도 카바페넴과 비카바페넴군 간 30일 사망률의 차이는 없는 것으로 나타났다(HR=1.01, 95% CI 0.27-3.76). 성향점수 가중치 후에도 카바페넴과 비카바페넴군 간 통계적으로 유의한 차이는 없는 것으로 나타났다(weighted HR=0.76, 95% CI 0.23-2.58). 경험적 요법으로 카바페넴군과 BL/BLIs 사용에 따른 비교결과 역시 30일 사망률에 있어서 두 군간 유의한 차이는 없는 것으로 나타났다(weighted HR=0.99, 95% CI 0.29-3.30).

II. 요로감염

1. 체계적 문헌고찰

본 연구의 선정제외 기준에 따라 ESBL 생성 장내세균에 의한 요로감염 환자에서 카바페넴과 기타항생제의 임상성과 비교에 최종적으로 선택된 문헌은 총 6편(환자수 499명)이었다. 연구대상자의 질환은 요로감염, 항생제 하부요로감염, 신우신염 등으로 다양하였으며, 연구유형은 전향적 코호트 연구 4편, 후향적 코호트 연구가 2편이었다. 카바페넴군은 다양한 약물이 사용되었으며, 4편(66.7%)의 연구에서 2가지 이상의 카바페넴을 포함하고 있었다. 카바페넴군과 비카바페넴군 간의 약제 효과를 비교하는 것으로 설계된 연구는 3편이었으며, 전체적으로 문헌의 선택 비율이 높거나 불명확한 것으로 평가되었다. 미생물학적 치료 성공을 보고한 4편을 메타분석한 결과 카바페넴 사용에 따른 미생물학적 치료 성공은 통계적으로 유의한 차이가 없는 것으로 나타났다(OR=1.56, 95% CI 0.44-5.56, I²=51%). 임상적 치료 성공률 역시 두 군간 통계적으로 유의한 차이가 없는 것으로 나타났다(OR=1.86, 95% CI 0.51-6.84).

2. 후향적 코호트연구

본 연구의 선정제외 기준에 부합하는 최종 분석 대상자는 총 319명이었다. 이들의 항생제 감수성 결과를 확인한 결과 카바페넴계열 항생제(ertapenem, imipenem, meropenem) 모두 93%이상의 높은 감수성을 보였다. 카바페넴계 이외의 항생제들 중에서는 tigecycline, amikacin, piperacillin-tazobactam 등이 비교적 높은 감수성을 보였다. 조기 임상적 관해율에 대하여 교란요인에 해당되는 성별, 연령, 감염병소, 이전 요로감염 여부, 조직학적 질환 등을 보정한 다변량 회귀분석 결과 카바페넴과 비카바페넴 항생제 사용에 따른 차이는 없는 것으로 나타났다(OR=1.70, 95% CI 0.50-5.80). 성향점수 가중치 후에도 두 군간 통계적으로 유의한 차이는 없는 것으로 나타났다(OR=1.99, 95% CI 0.66-5.94).
□ 결론
본 연구에서는 ESBL 양성 장내세균 균혈증 환자에서 경험적 요법으로 카바페넴이 우월하다는 근거는 명확히 확인되지 않았으며, 확정적 요법으로 non-BL/BLIs(특히, cephalosporines)에 비해 카바페넴 사용이 전체 사망 위험 감소와 관련이 있을 수 있는 것으로 나타났다. 증가하는 카바페넴 내성에 대한 우려와 함께 이번 체계적 문헌고찰과 후향적 코호트 연구에서 BL/BLIs 제제가 카바페넴에 비해 열등하지 않은 결과를 보인 점을 고려하였을 때, BL/BLIs 제제가 ESBL 양성 장내세균 균혈증 치료의 적절한 대안 제로 사용할 수 있을 것으로 여겨진다. 그러나 임상적 효과에 대한 명확한 결론을 입증하는 전향적 비교임상시험연구가 필요하며 확정적 요법에서의 카바페넴의 효과를 추가로 확증하여야 한다.
ESBL 양성 장내세균 요로감염 환자에서는 경험적 요법과 확정적 요법에 대한 카바페넴과 기타 항생제간의 임상 효과를 비교분석하는 비교성을 충분히 확보한 잘 설계된 추가 임상연구가 필요하다.

주요어
광범위 베타락타마제, 장내세균, 균혈증, 카바페넴, 요로감염
Executive Summary

Comparative effectiveness of carbapenems and alternative antibiotics for the treatment of bacteremia and/or urinary tract infectious disease by Enterobacteriaceae producing extended-spectrum β-lactamase

Dong Ah Park¹, Jinnie Rhee¹, Na Rae Lee¹, Ji Jeong Park¹, Soo Kyung Son¹, Kyong Ran Peck², Su Yeun Moon³, Eun-Jeong Joo⁴, Jae-Ki Choi⁵, Jae-Hoon Ko²

¹ National Evidence-based Healthcare Collaborating Agency
² Division of Infectious Diseases, Samsung Medical Center, Sungkyunkwan University School of Medicine
³ Division of Infectious Diseases, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine
⁴ Department of Internal Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine
⁵ Department of Internal Medicine, Bucheon St. Mary’s Hospital, The Catholic University of Korea College of Medicine

☐ Background

ESBL (Extended-Spectrum Beta-Lactamase)-producing enterobacteriaceae is highly associated with healthcare associated infection (HAI). The prevalence of gram-negative bacteria resistant to broad spectrum β-lactam antibiotics is rapidly increasing over the last 10 years. Although carbapenem therapy is considered as a selective alternative to treat ESBL-producing enterobacteriaceae, the use of carbapenems has been associated with the emergence of Carbapenem-resistant enterobacteriaceae (CRE). Since the wide use of carbapenems increases the incidence of CRE and there is a lack of
alternative treatment options when carbapenem treatment is failed, appropriate use of carbapenems is necessary. Recent studies suggest that other antibiotics (BL/BLIs, aminoglycoside, the fourth generation of cefalosporines, quinolones etc.) can be used as an alternative to carbapenems. Thus, the needs of studies on the efficacy of alternative antibiotics are continuously emerged.

Objective

This study systematically reviewed the recently published evidence to evaluate the clinical effectiveness of carbapenems and other alternative antibiotics in treating bacteremia and urinary tract infection caused by ESBL-producing Enterobacteriaceae and analyzed the comparative clinical outcomes of those therapies using multi-center data in Korea.

Methods

Systematic review

Systematic review was performed to evaluate the clinical safety and efficacy of carbapenems and other alternative antibiotics in treating bacteremia and urinary tract infection caused by ESBL-producing Enterobacteriaceae. Literature was searched through three international databases (Ovid-Medline, Ovid-EMBASE and Cochrane library) and seven domestic databases (KoreaMed, KMbase, KISS, RISS, KisTi, National Central Library and National Assembly Library) after search strategies are established in conjunction of clinical specialists. Since the selected papers were all non-randomized comparative studies and observation studies, risk of bias was assessed using RoBANS version 2. After the quality evaluation, treatment efficacy of the finally selected study was extracted and a meta-analysis was performed for medical outcomes of interest.

Retrospective cohort analysis

Patient data was retrospectively collected from four hospitals located in
Seoul and Kyunggi province to evaluate the current use of antibiotics and isolation of microorganisms and to compare the clinical safety and efficacy of carbapenems and other alternative antibiotics (non-carbapenems, BL/BLIs) in treating bacteremia and upper urinary tract infection caused by ESBL-producing *Enterobacteriaceae*. The primary outcome in bacteremia was the mortality within 30 days and that in urinary tract infection was the early clinical remission of the treatment. Since the clinical characteristics of patients can affect the selection of antibiotics, basic analysis including all subjects who met inclusion and exclusion criteria as well as an analysis using “stabilized Inverse Probability of Treatment Weighting (stabilized IPTW)” that adjusted patient clinical characteristics were conducted.

Results

- In bacteremia, there was no statistically significant difference in the mortality for carbapenem compared to non-carbapenem, but sub-group analysis according to type of antibiotics show that there was statistically significant difference in the mortality for carbapenem compared to non-BL/BLIs. Multivariate analysis of thirty day survival rate conducted also revealed that there was no significant difference.

- In urinary tract infection, there was no statistically significant difference in the microbiological failure for carbapenem compared to non-carbapenem, also multivariate analysis of early clinical remission revealed that there was no significant difference.

I. **Bacteremia**

1. **Systematic review**

According to the inclusion criteria, a total of 31 studies were finally selected to compare the efficacy of carbapenems and other alternative antibiotics in treating bacteremia caused by ESBL-producing...
Enterobacteriaceae. Most of the studies were conducted to identify risk factors rather than to compare effectiveness of carbapenems and other alternative antibiotics. The results of the risk of bias of included study were high in terms of comparability of participants, selection of participants, and confounding variables.

(1) Empirical treatment

A meta-analysis of mortality of the carbapenem group and the non-carbapenem group showed that there was no statistically significant difference (OR=0.84, 95% CI 0.54-1.32) and statistical heterogeneity between the literature was found to be significant (Chi²=42.89, df=17, P=0.0005, I²=60%). Sub-group analyses such as comparative study designs between the drugs and appropriate use of antibiotics also showed that there was no statistically significant difference (Although comparative design studies showed a significant difference but statistical heterogeneity was found to be high).

The result of meta analysis according to type of non-carbapenem antibiotics (BL/BLIs, non-BL/BLIs, cephalosporins, quinolones, aminoglycoside) also showed that there was no statistically significant difference.

(2) Definitive treatment

A meta-analysis of mortality of the carbapenem group and the non-carbapenem group showed that there was no statistically significant difference (OR=0.70, 95% CI 0.48-1.04), and statistical heterogeneity between the literature was found to be insignificant (Chi²=29.69, df=19, P=0.06, I²=36%). Sub-group analyses such as comparative study designs between the drugs and appropriate use of antibiotics also showed that there was no statistically significant difference.

A meta-analysis according to the types of antibiotics showed that the mortality of the carbapenem group was 62% lower compared to that of the non-carbapenem antibiotics (OR=0.38, 95% CI 0.22-0.65) and it was also
lower when compared to that of non-BL/BLIs (OR=0.65, 95% CI 0.43–0.99). However, there was no statistically significant difference between carbapenems and other non-carbapenem anti-biotics (BL/BLIs, quinolones, aminoglycoside).

2. Retrospective cohort study

We identified 554 patients who met the eligibility criteria. The sensitivity to carbapenems was greater than 95% and that to BL/BLIs (Piperacillin-tazobactam) was also high with the percentage of 83.6%. There was no statistically significant difference in thirty day survival rate between the groups both prior and post to propensity score weighting. Multivariate analysis of thirty day survival rate conducted after the adjustment of confounding variables affecting mortality rate such as age, infection route, transfer to ICU within 48 hours, infection sites, APACHE II, liver diseases, lung diseases, renal disease and diabetes also revealed that there was no significant difference (HR=1.01, 95%CI 0.27–3.76). After propensity score weighting, the statistical difference remained insignificant (weighted HR=0.76, 95%CI 0.23–2.58). There was no statistically significant difference in thirty day survival rate between the groups when carbapenems and BL/BLIs were used as empirical treatment (weighted HR=0.99, 95%CI 0.29–3.30).

II. Urinary tract infection

1. Systematic review

According to the inclusion criteria, a total of six papers were finally selected to compare the efficacy of carbapenems and other alternative antibiotics in urinary tract infection caused by ESBL-producing Enterobacteriaceae. The diseases included urinary tract infection, complicated lower urinary tract infection and nephropyleitis. A variety of drugs were used in the carbapenem group and more than two carbapenems were used in four studies (66.7%). Three studies had a comparative study design for carbapenems and non-carbapenems and the overall quality of
studies was judged to be poor. Analysis of four studies reporting successful treatment eradicating microorganisms showed that there was no statistically significant difference between the carbapenem group and the non-carbapenem group (OR=1.56, 95% CI 0.44-5.56). There was also no statistically significant difference in the clinically success rate in treatment (OR=1.86, 95% CI 0.51-6.84).

2. Retrospective cohort study

Finally selected subjects who met the inclusion criteria were 319 cases. The sensitivity to carbapenems (ertapenem, imipenem and meropenem) was higher than 90% and that to non-carbapenem antibiotics (tigecycline, amikacin, and piperacillin/tazobactam) was also relatively high. Multivariate regression analysis of early clinical remission of treatment after the adjustment of confounding factors affecting outcomes of treatment such as sex, age, sites of infection, history of UTI and connective tissue disease revealed that there was no significant difference (OR=1.70, 95% CI 0.50-5.80). After propensity score weighting, the statistical difference remained insignificant (OR=1.99, 95% CI 0.66-5.94).

Conclusions

Although there was no clear evidence that superiority of carbapenem in empirical therapy, this study results suggest that carbapenem therapy is associated with a reduction of overall mortality when it is used as a definitive treatment in bacteremia caused by ESBL-producing Enterobacteriaceae. However, considering an increasing carbapenem resistance and non inferiority of BL/BLIs use over carbapenems according to the study results, BL/BLIs can be used as alternatives for the treatment of patients with ESBL-positive Enterobacteriaceae bacteraemia. In patients with ESBL-positive Enterobacteriaceae urinary tract infection, the role of carbapenem and other antibiotics should be further evaluated for empirical and definitive treatment.
Acknowledgement

This study was supported by National Evidence-based Healthcare Collaborating Agency (NECA) funded by the Ministry of Health and welfare (grant number NA15-001).

Key words

extended-spectrum β-lactamase, ESBL, Enterobacteriaceae, carbapenems, bacteraemia, urinary tract infection
ESBL Extended-Spectrum Beta-Lactamase
Amox/Clav Amoxicillin-Clavulanic
Amp/sul Ampicillin-sulbactam
BL/BLIs Beta-lactam/Beta-lactamase inhibitors
BSI Blood stream infection
CCI Charlson Comorbidity Index
CDAD Clostridium difficile-associated diarrhea
CNS central nervous system
CRE Carbapenem-Resistant Enterobacteriaceae
CIP/LEV Ciprofloxacin-Levofloxacin
DNR Do no resuscitate
E. coli Escherichia coli
IPTW Inverse Probability of Treatment Weighting
K. pneumoniae Klebsiella pneumoniae
MIC Minimal Inhibitory Concentration
Pip/tazo Piperacillin-tazobactam
PS Propensity Score
Ticar/Clav Ticarcillin-clavulanate
TMP/SMX Trimethoprim-sulfamethoxazole
UTI Urinary tract infection
서론

1. 연구배경 및 필요성

ESBL (Extended-Spectrum Beta-Lactamase) 생성 장내세균(Enterobacteriaceae)은 보건의료 관련 감염과 상당히 관련성이 높으며 광범위 베타 락탐제에 내성이 있는 그람 음성 세균 유병률은 지난 10년에 걸쳐 빠르게 증가하고 있다. ESBL 생성 세균 감염 질환에서 현재는 카바페넴(carbapenem)이 선택 치료 대안으로 고려되고 있으나 카바페넴 사용 증가는 카바페넴 내성을 가진 장내세균(Carbapenem-Resistant Enterobacteriaceae, CRE)의 출현을 가져왔다. 다른 대안 치료제 중 하나인 4세대 cephalosporin은 ESBL 생성 장내세균에 대해 in vitro에서 감수성을 보이는 경우도 있으나 실제 임상에서 사망률이 높은 것으로 알려졌으며, fluoroquinolone의 내성은 기전이 다르나 ESBL과 공존하는 것이 자주 관찰된다. Aminoglycoside, sulfonamides, tigecycline, colistin 및 fosfomycin 등의 대안치료제의 경우 경험적 요법으로서의 근거가 부족할 뿐만 아니라 내성률, 부작용 등의 부담이 있다. 하지만, 또 다른 대안 치료제인 BL/BLIs(Beta-lactam/Beta-lactamase inhibitors)의 경우는 ESBL 생성 세균에 의한 감염결환에서 감수성이 높아 적절한 대안치료제로 대두되고 있다(대한감염학회, 2014). ESBL 생성 장내세균 군혈증 환자에 대한 전향적 연구 6편의 사후 분석 (Rodriguez-Bano 등, 2012) 결과, ESBL 양성 E.coli 세균 치료로 카바페넴과 BL/BLIs 간 사망 위험의 차이는 없는 것으로 보고된 바 있다.

반면, 요로감염과 같은 경증의 감염에서는 카바페ềm 이외의 항생제들이 효과가 있음을 입증하는 몇몇 연구들도 수행되었다. ESBL 생성 E.coli 에 의한 급성 신우신염으로 진단 받은 국내 지역사회환자들에 대한 연구(Park 등, 2014)에서는 카바페넴이외의 항생제(특히 aminoglycoside계열의 amikacin)도 효과적인 것으로 나타났다. 인도에서 수행된 ESBL 생성 요로감염으로 입원한 환자 287명에 대한 연구결과에서도 경증의 환자에 대
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료의 임상효과 비교연구

어서는 카바페넴 이외의 항생제 성공적으로 사용될 수 있다는 것을 제시하였다 (Trivedi 등, 2012). 터키에서 수행된 다기관 연구에서는 ESBL 생성 E. coli 관련된 복합성 하부요로감염 환자들에 대하여 카바페넴과 fosfomycine-tromethanol (FT)의 효과를 비교하였는데, FT가 ESBL 생성 E. coli의 복합성 하부요로감염 치료에 적합하고, 효과적이며, 비용이 적게 든다는 대안인 것으로 나타났다 (Senol 등, 2010). 일본에서 수행된 연구에서는 생성 장내세균에 의한 요로감염의 유 효성을 비교한 연구에서도 esbl된 E. coli의 복합성 하부요로감염 치료에 있어 유 효한 대안이 될 수 있음을 제시하고 있다 (Doi 등, 2013). 반면 meropenem이나 imipenem과 같은 카바페넴 항생제들과 비교한 연구에서는 gentamicin이나 amikacin과 같은 aminoglycoside계열 항생제보다 효과가 우수하다고 보고된 바 있으며 (Kim 등, 2000). 복합성 하부 요로감염 또는 신우신염(복합성 또는 비복합성) 환자들에 대한 치료에 있어 정맥주사를 통한 duripenem의 비열등성을 levofoxacin과 비교하여 평가한 연구에서도 duripenem의 우수성을 보고하기도 하였다 (Kaniga 등, 2010). 최근 항생제 내성의 증가와 다재내성균의 출현은 건강을 위협하는 중요한 요인이다. ESBL 생성 장내세균에 의한 감염질환은 병원감염에서 주로 나타나나 지역사회 획득 감염에서도 점차 증가 추세를 보이고 있다. ESBL 생성 장내세균감염의 표준치료는 카바페넴계 항생제 사용이나 카바페넴의 광범위 사용은 카바페넴 내성 장내세균 등의 항생제 내성 균주의 출현을 증가시키는 원인이 되며 치료실패 대안으로 사용할 수 있는 약제가 부족하게되므로 적절한 카바페넴의 사용이 필요하다. 앞서 기술한 바와 같이 최근 일부 연구들 통해 기타 항생제(β-lactams, aminoglycoside, 4세대 cephalosporines, quinolones 등)의 사용도 고려될 수 있는 것으로 보이고 있으나 대한항생제에 대한 체계적 근거는 아직까지 부족한 실정이다. 그러므로 카바페넴 이외의 대한항생제의 효과에 대한 연구를 구준히 수행함으로써 카바페넴 항생제의 대안적 치료법을 적극적으로 발굴해낼 필요가 있다.

ESBL 생성 장내세균 군혈증 및 요로감염 환자에서의 현재까지 출판된 임상연구는 관찰연구뿐이며 ESBL 생성 장내세균 감염질환에서 사망에 영향을 미치는 영향 요인을 규명하는 연구가 대부분이다. 최근 들어 항생제 치료범간의 효과를 비교분석하는 연구가 출판되고 있지만, 이 연구들은 감염원, 치료법 세부사항, 추가 항생제 사용 및 최종 결과 지표 등이 다르고 다양한 교란변수들이 존재하기 때문에 명확한 결과를 제시하는데 제한점을 가지고 있다.
선행 체계적 문헌고찰(Vardakas 등, 2012)의 경우 ESBL 생성 장내세균에 의한 균혈증 환자에서 카바페넴과 대안항생제 치료제 간의 임상효과에 대해 이용가능한 근거를 최대한 활용하여 근거 합성을 통해 종합적인 결과를 제시하였다. 하지만 포함문헌이 모두 코호트 연구로 근거수준이 낮고, 포함된 문헌의 수가 적은 한계점을 가지고 있으며, 2012년 이후 관련 문헌들이 꾸준히 출판된 상태이다. 따라서 최신까지의 근거를 통합하여 치료 대안에 대한 객관적인 정보를 제공하는 것이 필요하다.

2. 선행연구

2.1. 체계적 문헌고찰

Vardakas 등(2012)은 ESBL 생성 장내세균에 의한 균혈증 환자 치료에 있어서 카바페넴과 그 외 대안적 항생제의 치료성과를 비교한 체계적 문헌고찰 수행 결과를 발표하였다. 총 21편을 메타분석한 결과 경험적 요법시 사망률에 있어서 카바페넴군과 BL/BLIs군과는 차이가 없는 것으로 나타났고, non-BL/BLIs군, cephalosporins군, quinolones군과 비교하여서는 통계적으로 유의하게 사망률이 낮은 것으로 분석되었다. 확정적 요법에서는 카바페넴군의 사망률이 non-BL/BLIs군과 cephalosporins군의 사망률보다 낮게 나타났다. 추가 연구 결과는 아래 표 1과 같다.

표 1. 선행 체계적 문헌고찰(Vardakas 등, 2012)의 세부 연구 결과 요약표

<table>
<thead>
<tr>
<th>중재군 vs 비교군</th>
<th>문헌 수, D/E</th>
<th>확정적 요법</th>
<th>경험적 요법</th>
</tr>
</thead>
<tbody>
<tr>
<td>적절한 치료 vs 부적절한 치료</td>
<td>NA/11</td>
<td>NA</td>
<td>69/406 (22) vs 141/370 (38) 0.64 (0.44–0.88)</td>
</tr>
<tr>
<td>카바페넴 vs BL/BLIs</td>
<td>11/13</td>
<td>75/398 (19) vs 24/118 (20) 0.52 (0.23–1.13) REM (I(^2) 71%) vs 64/317 (20) 0.91 (0.66–1.25) FEM (I(^2) 15%)</td>
<td></td>
</tr>
<tr>
<td>카바페넴 vs non-BL/BLIs</td>
<td>13/11</td>
<td>69/373 (18) vs 64/274 (23) 0.65 (0.47–0.91) FEM (I(^2) 26%) vs 30/199 (15) 0.50 (0.33–0.77) FEM (I(^2) 13%)</td>
<td></td>
</tr>
<tr>
<td>카바페넴 vs quinolones</td>
<td>7/8</td>
<td>38/300 (13) vs 13/80 (16) 0.63 (0.34–1.15) FEM (I(^2) 0%) vs 21/164 (13) 0.34 (0.19–0.62) FEM (I(^2) 0%)</td>
<td></td>
</tr>
</tbody>
</table>
2015년 발표된 Shiber 등의 체계적 문헌고찰 연구는 ESBL 생성 유무와 관계없이 모든 균혈증 발생 환자에서 카바페넴과 BL/BLIs의 치료성과를 비교하였다(Shiber, 2015). 31편의 무작위배정 임상연구만을 포함하여 분석한 경우 ESBL 생성 장내세균으로 인한 균혈증 환자에서의 항생제 치료성과를 따로 제시하지는 않았으나, ESBL 생성 균주의 포함가능성이 높은 것으로 예상되는 호증군 감소성 발열 환자(neutropenic fever) 및 병원감염성 균혈증 환자에서 카바페넴 치료군과 BL/BLIs 치료군의 사망률과 임상적 치료 실패율에 유의한 차이가 없음을 하위군 분석으로 보고하였다.

2.2. 국내외 현황

ESBL 감염은 1980년대 중반 서유럽에서 처음 발견된 이후, 점차 증가해오고 있다. ESBL 생성률(production rate)은 다양한 연구 결과들로부터 17%에서 70%까지 다양하게 보고되고 있다(Sharma 등, 2013). ESBL 생성 감염에 대한 연구는 서구, 특히 유럽에서 많이 보고되고 있는데, 글로벌 다기관 조사연구 결과에 따르면(Coque 등, 2008) 지역별로 라틴아메리카에서 발생 빈도가 월등히 높았으며, 아시아/태평양, 유럽, 북미의 순으로 나타나고 있다(그림1).
서론

그림 1. 국외 지역별 ESBL 생성 감염 빈도(2004-2006)

1997년 시작된 MYSTIC (Meropenem Yearly Susceptibility Test Information Collection) 감시 프로그램은 유럽과 미국의 장내세균 감염과 ESBL 생성/또는 AmpC β-lactamases 생성 환자 자료를 수집하고 유병율 및 약물감수성을 보고하고 있다 (Goossens 등, 2005). 유럽에서 ESBL 생성 E. coli 감염은 1997년 2.1%에서 2004년 10.8%로 증가하고 있었으며, K. pneumoniae 균에서 역시 9.0%에서 13.6%로 증가하였다. 이러한 상황은 미국에서는 다르게 나타나고 있었으며, ESBL 생성 감염이 유럽보다 낮게 나타났다. ESBL 생성 E. coli 감염이 1999년 5.1%에서 2004년 1.4%로 감소하였으며, K. pneumoniae 감염 균 역시 7.2%에서 4.4%로 감소하였다(그림2).

이후 수행된 국가간판 감시 연구들에서 역시 ESBL 생성 감염 유병률이 증가하고 있음을 보고하고 있다. 스페인의 경우 2000년에 40개 기관을 대상으로 4개월간 수행된 연구에 따르면 ESBL 유병률은 K. pneumonia와 E. coli에서 각각 2.7%, 0.5%인 것으로 나타났다(Hernandez 등, 2003). 2006년에 새롭게 보고된 연구에서는 더 증가하여 K. pneumonia에서 8%, E. coli에서 6%로 나타났다.

아시아 지역의 ESBL 생성 장내세균의 발생은 역시 세계의 다른 지역과 같이 증가하고 있다(Hawkey 등, 2008). 그러나 1980년대초반의 아시아 지역 ESBL 발생과 관련된 통합적인 자료는 부족하다. ESBL이 β-lactam계 항생제 내성의 주요 메커니즘으로서 중요하게 인식됨에 따라 SENTRY 1998-1999 항생제 감시프로그램을 통해 아시아-태평양 지역 및 남아프리카의 ESBL 생성 감염 현황을 보고하였다. 의료기관 자료조사를 통하여, 중국은 E. coli 감염 163명 중 40명(24.5%)이 ESBL 생성 감염인 것으로 나타났으며, 일본은 152명 중 4명(2.6%)인 것으로 나타났다. ESBL 생성 K. pneumonia 감염은 중국과 일본에서 각각 23명(30.7%), 13명(12.3%)이었다(Bell, 2002). 이후 수행된 SENTRY 1998-2002 연구에서는 ESBL 생성 K. pneumonia 감염이 중국에서 30.7%, 일본에서 10% 미만인 것으로 나타났다(Hirakata 등, 2005).

미국 질병관리본부에 따르면(CDC, 2013) 연간 미국에서 발생하는 의료 관련(healthcare-associated) 장내세균 감염은 140,000명이었으며, 이중 ESBL 생성 장내세균은 26,000명(18.6%), 카바페넴 내성 장내세균 감염은 9,300명(6.6%)으로 추정되었다. ESBL 생성 장내세균은 두 번째로 높은 위험도를 나타내는 serious level의 의료관련 감염균으로서, 연간 1,700여명이 ESBL생성 장내세균으로 사망하는 것으로 추정하고 있다. 카바페넴의 무분별한 사용으로 인해 증가가 우려되는 카바페넴 내성 장내세균은 가장 높은 위험도를 나타내는 urgent level의 의료관련 감염균으로서, 연간 600여명이 카바페넴 내성 장내세균 감염의 주요 균주(Klebsiella 및 E. coli)에 의해 사망하는 것으로 추정하고 있다.

ESBL 생성 감염은 그렇지 않은 감염에 비해 사망률이 더 높은 것으로 알려져 있다. 2007년 출판된 체계적 문헌고찰에 따르면, ESBL 생성균혈증의 상대위험도(unadjusted RR)는 1.85(95% CI 1.39-2.47) 이었다.

최근에 수행된 개별 연구에서도 ESBL 생성 균혈증에서 사망률이 유의하게 높은 것으로 보고되고 있다. Quirante 등(2011)에 따르면 감염원, 연령, 중증도 등에 따라 매칭하여 사망률을 비교한 결과, ESBL 생성 균혈증군 50.9%, 비 ESBL 생성 균혈증군 13.2%
로 ESBL 생성균혈증에서 사망률이 유의하게 높은 것으로 나타났으며 (P<0.001), Apisarnthanarak 등의 연구 (2008)에서도 역시 사망률이 각각 36%, 15%로 ESBL 생성균혈증에서 높은 것으로 나타났다 (P<0.05).

Melzer 등 (2007)은 로지스틱 회귀 분석을 통하여, ESBL 생성 E. coli에 의해 야기된 균혈증의 사망할 오즈는 대조군에 비하여 3.57배 더 높은 것으로 보고하고 있으며 (adjusted OR=3.57, 95% CI 1.48-8.60), Cordery 등 (2007)은 ESBL 생성 균혈증에서의 25일 이내 사망률이 치료의 적절성 여부로 보정했을 때 6.84배 (95% CI 1.4-49.61)가지 증증도를 보정했을 때 8.5배 (95% CI 1.24-58.24) 높은 것으로 나타났다. 국내에서 수행된 Ha 등 (2013)의 연구에서도 ESBL 생성 E. coli에 의한 균혈증의 사망할 오즈가 3.01배 (95% CI 1.45-6.28) 높았다.

균혈증의 감염경로를 살펴보면, 병원감염이 39.4%로 가장 많았으며, 지역사회관련감염이 35.2%, 지역사회발생 의료관련감염은 25.4%이었다. 항생제 내성으로 인한 초기 경험적 항생제 선택사용이 적절하지 않은 경우 적절한 군에 비하여 치료 실패율 (35.4% vs. 15.2%, P<0.001)과 30일 사망률 (29.0% vs. 15.5%, P<0.001)이 모두 높은 것으로 나타났다. 또한 ESBL 생성균에서 비생성균인 경우보다 초기 치료 실패율 (20.1% vs. 14.0%, P=0.004) 과 30일 감염관련사망률 (19.4% vs. 13.0%, P=0.029)이 높은 것으로 나타났다.

요로감염의 감염경로를 살펴보면, 지역사회관련 감염이 54.9%로 가장 많았으며, 지역사회발생 의료관련 감염이 23.0%, 병원감염은 22.1%이었다. 요로감염 초기에 발열이 있던 환자에서, 초기 경험적 항생제가 적절한 경우 대조군에 비하여 24시간 이내 해열된 환자 비율이 통계적으로 유의하게 높았다 (55.6% vs. 41.9%, P<0.001). 초기 경험적 항
생체가 적절했던 경우의 30일 사망률은 3.0%, 부적절했던 경우의 30일 사망률은 3.6%으로 경험적 항생제의 적절성과 사망률 간에는 유의한 상관관계가 없는 것으로 나타났다 (P =0.548).

3. 연구의 목적
본 연구에서는 ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 기타 대안 항생제간의 임상적 안전성 및 효과성을 평가하기 위하여 최근까지의 임상연구 문헌을 체계적으로 고찰하고 국내 다기관 환자자료를 이용하여 국내 임상성과를 비교 분석하고자 하였다. 주요 연구내용별 구체적인 연구목적은 아래와 같다.

3.1. 체계적 문헌고찰
체계적 문헌고찰에서는 ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 경험적 요법 및 확정적 요법으로 투여한 카바페넴과 대안항생제간의 임상적 안전성·효과성을 비교 분석한다.

3.2. 후향적 코호트 연구
국내 4개 기관의 ESBL 생성 장내세균에 의한 균혈증 및 상부요로감염 환자의 의무 기록을 조사하여 항생제 사용 및 미생물감사 현황을 조사하고 카바페넴과 대안항생제간의 임상 효과 및 부작용을 분석한다.
연구방법

1. 체계적 문헌고찰

1.1. 핵심질문

본 연구는 ESBL 생성 장내세균에 의한 균혈증 및 요로감염 환자에서 카바페넴 항생제 치료법과 기타 항생제 치료방안의 임상성과에 대한 문헌적 근거를 검토하기 위해 아래와 같이 핵심질문을 나누었다(표 2).

표 2. 체계적 문헌고찰 핵심질문

<table>
<thead>
<tr>
<th>핵심질문</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) ESBL 생성 장내세균에 의한 균혈증 환자에서 카바페넴과 BL/BLIs 치료법의 임상적 안전성 및 효과성은 어떠한가?</td>
</tr>
<tr>
<td>2) ESBL 생성 장내세균에 의한 균혈증 환자에서 카바페넴과 non-BL/BLIs 치료법의 임상적 안전성 및 효과성은 어떠한가?</td>
</tr>
<tr>
<td>3) ESBL 생성 장내세균에 의한 요로감염 환자에서 카바페넴과 BL/BLIs 치료법의 임상적 안전성 및 효과성은 어떠한가?</td>
</tr>
<tr>
<td>4) ESBL 생성 장내세균에 의한 요로감염 환자에서 카바페넴과 non-BL/BLIs 치료법의 임상적 안전성 및 효과성은 어떠한가?</td>
</tr>
</tbody>
</table>

1.2. PICO-TS

체계적 문헌고찰의 세부 PICO-TS는 해당 질환(균혈증과 요로감염)에 따라 대상 환자 및 결과변수만 일부 다르게 고려하였으며, 다른 세부내용들은 동일하게 적용하였다. 각각의 세부 내용은 다음과 같다(표 3).
표 3. PICO-TS 세부 내용

<table>
<thead>
<tr>
<th>구분</th>
<th>세부내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patients</td>
<td>ESBL 생성 장내세균에 감염된 성인환자</td>
</tr>
<tr>
<td>대상 환자(대상 환자)</td>
<td>· Bacteraemia (bloodstream infection)</td>
</tr>
<tr>
<td></td>
<td>· Urinary tract infection (pyelonephritis, ureteritis 등)</td>
</tr>
<tr>
<td>Intervention</td>
<td>· Carbapenems (Meropenem, Ertapenem, Doripenem, Biapenem, Imipenem, Panipenem, Betamipron)</td>
</tr>
<tr>
<td>Comparator</td>
<td>· β-lactam/β-lactamase inhibitor combinations (BL/BLIs)</td>
</tr>
<tr>
<td>비교치료법(비교치료법)</td>
<td>· non-BL/BLIs (Aminoglycoside, 4세대 cephalosporines, Quinolones, colistin, tigecyclin)</td>
</tr>
</tbody>
</table>

균혈증 관련

유호성 지표
- 일차결과변수
 - 병원내 사망(28~30일, 14일 all-cause mortality)
 - 1차결과변수
 - 균혈증 관련 사망률(Bacteremia-related mortality)
 - 7일내 사망률

군혈증 관련

유호성 지표
- 일차결과변수
 - 균혈증 관련 사망률(Bacteremia-related mortality)
 - 7일내 사망률

요로감염 관련

유호성 지표
- 일차결과변수
 - 미생물학적 치료 성공률(Microbiological success rate)
 - 1차결과변수
 - 미생물학적 치료 성공률(Microbiological success rate)
 - 28~30일, 14일, 7일 사망률(all-cause mortality)
 - 감염관련 사망률(infection-related mortality)
 - 항생제 감수성(Antimicrobial susceptibility)
 - 발열기간
 - 재원기간, ICU 입원기간
 - 재입원

안전성 지표
- 혼합종(Any adverse events): 과민반응, Clostridium difficile로 인한 설사, 설사, 오심 및 구토, 간질 등
- 치료중단을 요하는 혼합종(AEs requiring treatment discontinuation)
1.3. 문헌검색

문헌검색은 출판연도 및 언어에 제한을 두지 않고 국내외 데이터베이스를 이용하여 수행하였으며, 수기검색을 병행하였다. 검색전략은 외부 연구진의 임상 자문회의를 통하여 최종 확정하였으며 구체적인 세부 검색결과는 질환별로 [부록]에 제시하였다.

가. 국외

국외 문헌 검색은 3개의 핵심 전자 데이터베이스인 Ovid-MEDLINE, Ovid-Embase, Cochrane Central Register of Controlled Trials (CENTRAL)를 이용하였다. Ovid-MEDLINE에서 사용되는 검색어를 기본으로, 각 데이터베이스의 특성에 맞는 MeSH(Medical subject headings) term, 논리연산자, 절단 검색 등의 검색기능을 적절히 활용하여 검색전략을 작성하였으며, 출판언어 및 기간에는 제한을 두지 않았다. 연구 유형에 따른 검색필터는 SIGN(Scottish Intercollegiate Guidelines Network) 필터를 적용하였다.

나. 국내

국내 문헌 검색은 KoreaMed, 의학논문데이터베이스검색(KMBASE), 학술데이터베이스검색(KISS), 한국교육학술정보원(RISS), 과학기술학회마을(KISTI), 국립중앙도서관, 국회의사당에서 총 7개의 전자 데이터베이스를 사용하였다. 검색전략은 국외 검색시 사용한 검색전략을 기본으로 하되 논리연산자, 절단검색 등이 지원되지 않는 데이터베이스의 경우 이를 적절히 수정, 간소화하여 사용하였으며, 각 데이터베이스의 특성에 맞춰 영문 및 국문을 혼용하였다. 국외 검색과 마찬가지로 출판언어 및 기간에 제한을 두지 않았다.

d. 수기검색

선행 체계적 문헌고찰 및 문헌검색 과정에서 확인된 동 주제와 관련된 문헌(체계적 문
현고찰, 메타분석 연구, 종설 등)의 참고문헌 등을 토대로, 본 연구의 선정/배제기준에 적합한 문헌을 추가로 검토하여 선정 여부를 판단하였다.

1.4. 문헌선택 및 분류

문헌의 선택은 검색된 문헌에 대하여 2명의 연구자가 독립적으로 검토한 뒤 의견 일치를 통하여 최종 선택하였다. 이러한 과정에서 연구진 간 의견의 불일치가 있을 경우에는 제 3자와의 논의를 통하여 의견의 일치를 이루었다. 1차 문헌선택 과정은 문헌의 제목과 초록으로 본 연구의 주제와 관련성이 없다고 판단되는 문헌들을 배제하였으며, 2차 문헌선택 과정은 문헌의 전문(full-text)을 검토하여 선택/배제 기준에 따라 핵심질문에 적합한 문헌을 선정하였다. 자세한 문헌 선택/배제 기준은 아래 표 4와 같다. 두 명 이상의 검토자가 독립적으로 시행하여 의견을 이의 지자 없을 경우 제 3자와의 논의를 통해 결정하였다.

표 4. 문헌 선택/배제 기준

<table>
<thead>
<tr>
<th>선택기준</th>
<th>배제기준</th>
</tr>
</thead>
</table>
| • 사전에 정의한 연구대상 문헌 | • 원저가 아닌 연구(증상, letter, comment, 체계적
| • 카바페넴과 기타 항생제군의 치료성과를 비교한 | 문헌고찰, meta-analysis 연구 등) |
| 문헌 | • 회색문헌(초록만 발표된 연구, 학위논문 등) |
| • 사전에 정의한 의료결과를 보고한 문헌 | • 동물연구 또는 전임상시험 |
| | • 한국어 및 영어로 출판되지 않은 문헌 |
| | • 중복 문헌 |
| | • 원문확보불가 |

1.5. 문헌의 비뚤림 위험평가

문헌의 비뚤림 위험평가는 연구설계에 따라 무작위배정 비교임상시험의 경우 Cochrane의 Risk of Bias (RoB) (Higgins 등, 2011)를, 비무작위 비교임상연구 및 관찰연구는 Risk of Bias for Non-randomized Studies (RoBANS) 평가도구(김수영 등, 2013)를 이용하기로 하였다. 두 명 이상의 검토자가 독립적으로 체계적문헌고찰을 수행한 뒤 의견을 이의 지자 없을 경우 제 3자와의 논의를 통해 결정하였다.

동 체계적 문헌고찰에 선정된 문헌은 모두 비무작위 비교임상연구 및 관찰연구였기 때문에 RoBANS version 2를 이용하여 문헌의 비뚤림 위험을 평가하였다. RoBANS ver.2 평가도구는 ① 대상군 비교가능성, ② 대상군 선정, ③ 교란변수, ④ 노출 측정, ⑤ 평가
자의 눈가림 결과를 평가하고자 하는 연구개발에 대한 눈가림 불완전한 결과자료 선택적 결과보고의
여러 항목으로 구성되어 있으며, 평가 항목 및 기준은 ROBANS version 2 메뉴얼의 가이드라인을
변경하지 않고 그대로 적용하였다. 핵심질문에서 언급된 두 중재군의 결과를 보고하기는 하였으나
연구 설계가 두 군의 비교 설계가 아니어서 확인 가능한 정보가 부재한 경우의 비틀림은 ‘불확실’로
평가하도록 하였다.

1.6. 자료추출
자료추출은 최종 선정된 모든 문헌에 대하여, 연구자 1인이 우선적으로 자료추출 양식에 따라 문헌을
정리한 후 다른 한 명의 연구자가 추출된 결과를 독립적으로 검토하도록 하고, 두 연구자가 의견을
일치하여 완성하도록 하였다. 검토과정에서 의견 불일치가 있을 경우에는 제 3자와의 논의를 통하여
의견합의를 이루도록 하였다.
자료추출 양식은 문헌선택 과정에 참여하고 있는 연구자가 먼저 초안을 작성하고, 임상의 자문 및
연구진의 의견을 통하여 최종 확정되었다. 주요 자료추출 내용으로는 연구설계, 연구국가, 연구기관 등
문헌의 일반적 특성과 연구대상 및 중재법 관련 세부사항(약물명, 용법/용량, 병용치료법), 유효성 및
안전성 결과, 기타 결과값 등이 포함되었다.

1.7. 자료분석
연구결과는 해당 결과지표에 대한 문헌 합성이 가능한 경우 양적 분석(quantitative analysis)인 메타분석을
수행하며, 불가능한 경우 질적 검토(qualitative review) 방법을 적용하여 제시하도록 하였다.
이분형 자료는 오즈비(Odds ratio, OR)를 산출하며, 연속형 자료의 경우 가중평균 차이(standardized
mean difference)로 분석하여 95% 신뢰구간과 함께 제시하도록 하였다. 동 연구의 경우 포함된
문헌들 중 상당수가 약제간 결과지표 비교를 위한 비교연구 설계를 취하고 있지 않아
중재군과 비교군 간 비교가능성 확보여부를 판단하는 것이 어려웠다. 따라서 기본적으로
문헌간 이질성이 높을 것으로 판단하여 모든 분석에 대하여 변량효과모형(random
effect model)을 기본 분석방법으로 사용하였다.
이질성(heterogeneity)에 대한 판단은 우선 forest plot을 토대로 시각적으로 확인하고,
Cochrane Q statistic(P < 0.10 유의성 판단기준)과 I² statistic을 사용하였다. I² 통계량이 50% 이상일
경우는 실제적으로 문헌간 이질성이 있는 것으로(Higgins 등, 2008) 동 연구에서는 이를 기준으로 문헌간
통계적 이질성을 판단하였다.
자료분석은 연구 핵심질문에 따라 카바페넴군과 비교 항생제군의 자료를 합성하여 기본분석을 수행하였으며, 추가적으로 특정 집단에서의 결과 확인을 위하여 사전에 정한 기준을 적용하여 하위군 분석을 수행하였다(표 5).

<table>
<thead>
<tr>
<th>항목</th>
<th>분류</th>
</tr>
</thead>
<tbody>
<tr>
<td>연구대상 특성</td>
<td>요로감염 특성: 단순성 vs 복합성</td>
</tr>
<tr>
<td>중재 특성</td>
<td>균혈증에서 세팔로스포린계 항생제의 세대별 구분</td>
</tr>
<tr>
<td>연구설계</td>
<td>연구설계: 약제비교설계 vs 약제비교설계 아닌</td>
</tr>
</tbody>
</table>

기본분석과 하위군 분석 이외에 민감도 분석으로서, 경험적 요법의 카바페넴군과 비카바페넴군의 비교에서 사용약제의 적절성 여부를 기준으로 적절한 치료를 받은 환자군만을 포함한 문헌들을 대상으로 민감도 분석을 수행하였다. 확정적 요법에서는 비카바페넴군 및 non-BL/BLIs군에서 cephalosporins계열 항생제로 치료받은 환자를 분석에서 제외하는 민감도 분석을 추가로 수행하였다.

출판비뚤림 평가는 메타분석에 포함된 문헌이 10편 이상인 결과지표에 대하여 contour-enhanced funnel plot과 Egger test를 수행하여 평가하였다.

통계 분석은 RevMan 5.3을 이용하였으며, 균간 효과 차이에 대한 통계적 유의성은 유의수준 5%에서 판단하였다. 출판비뚤림 평가는 STATA 11.0을 사용하였으며, Egger test의 유의성은 유의수준 10%에서 판단하였다.

1.8. 근거수준 평가
본 연구에서 수행한 체계적 문헌고찰 결과의 근거수준은 Grading of Recommendations Assessment, Development and Evaluation (GRADE) 접근방법으로 평가하였다.
2. 후향적 코호트 분석

ESBL 생성 장내세균에 의한 균혈증 및 상부 요로감염 환자에서 항생제 사용 및 미생물 검사 현황을 조사 하고, 카바페넴과 대안 항생제 요법(BLE/BLIS)간 임상적 안전성 및 효과성을 비교분석하기 위하여 서울 및 경기 소재 4개 의료기관에서 후향적으로 의무기록 자료를 수집하여 환자자료를 구축하였다.

2.1. 균혈증

가. 자료원

2010년 1월 1일~ 2014년 12월 31일(5개년도) 사이에 혈액 미생물 배양 검사에서 생성 ESBL E. coli 또는 K. pneumoniae 양성으로 판정된 균혈증 입원환자를 대상으로 등록하였다.

![균혈증 환자 대상 모집 설계](그림 3)

연구대상자의 선정제외 기준은 아래와 같다(표 6).

![균혈증환자 선정제외 기준](표 6)

- 환자 및 균혈증 발생 포괄
- 참여 미생물 배양 검사에서 ESBL생성 E. coli 또는 K. pneumoniae 양성으로 판정된 첫 번째 episode인 균혈증 입원환자
- 만 18세 이상인 경우
- 임산부
- 심내막염(endocarditis), 골수염(osteomyelitis) 등 4주 이상의 장기간 항생제 치료요법이 추정되는 장기의 감염
- 경험적 요법 및 확정적 요법 모두 동정된 균주에 감수성이 없는 경우
- 경험적 요법이 감수성이 없고, 확정적 요법이 48시간이내로 투여된 경우
- 진단검사후 두상상신 경계적 전집적 차로가 이루어지고 있지 않은 경우
- 추적관찰기간동안(1달) 증폭감염이 발생한 경우
나. 변수의 정의

1) 수집변수

관련 선행연구 검토 및 전체 연구진 회의를 통하여 자료수집을 위한 증례기록지를 개발하였다(부록 3.1)。

증례기록지의 주요 내용은 환자 기본정보, 동반상병 처치 및 중증도, 감염관련정보, 항생제사용정보, 결과변수관련사항으로 구성되어 있으며 관련 변수의 구체적인 내용은 아래와 같다(표 7).

표 7. 균혈증 수집변수

<table>
<thead>
<tr>
<th>결과지표</th>
<th>정의</th>
</tr>
</thead>
</table>
| 환자기본정보 | - 연령 <circle4>
| | - 성별 <circle4>
| | - 입원일자 <circle4>
| | - 퇴원일자 <circle4>
| | - 배양검사 처방일시 <circle4>
| | - 배양검사 양성판정일시 <circle4> |
| 동반상병, 처치 및 중증도 | - Charlson Comorbidity Index (CCI) <circle4>
| | - 수술력(최근 3개월 이내) <circle4>
| | - 화학치료력(최근 3개월 이내) <circle4>
| | - 방사선치료력(최근 3개월 이내) <circle4>
| | - 입원여부(최근 3개월 이내) <circle4>
| | - immune suppressive agent 사용력(최근 3개월 이내) <circle4>
| | - prior antibiotics 사용력(이전 30일 이내) <circle4> |
| 감염 관련 | - 감염경로(Community-acquired, healthcare-associated, Hospital-acquired) <circle4>
| | - 감염경로 상세정보(감염 발생 90일 전의 입원 여부 등) <circle4>
| | - 감염 병소(UTI등) <circle4>
| | - 감염중증도 <circle4>
| | 1) SIRS <circle4>
| | 2) 호흡기감소증 발생여부 <circle4>
| | 3) Lab value <circle4>
| | 4) Pitt bacteraemia score (PBS) <circle4>
| | 5) Acute Physiology and Chronic Health Evaluation (APACHE) II score (if in ICU) <circle4> |
| 항생제 사용 | - 항생제 사용 시작일시(경험적 요법/ 확정적 요법) <circle4>
| | - 항생제 사용 종료일시 <circle4>
| | - 초기 사용한 항생제의 48시간 미만여부 <circle4>
| | - 사용 항생제의 개별 및 성분 <circle4> |
치료유형에 따라 경험적 요법(empirical therapy)은 원인 미생물을 적절히 예측하여 검사결과 보고전 항생제를 투여하는 것(검사결과 확인 후 48시간 이상 투여)으로 경험적 항생제 사용 이후 배양 검사에서 원인균을 확인하여 감수성에 따른 적절한 항생제를 투여하는 것(검사결과 확인 후 48시간 이상 투여)을 “확정적 요법(definitive therapy)”으로 분류 하였다.

감염경로는 입원당시 감염증이 없었던 환자에서 입원 후 48시간이 경과한 후 얻어진 혈액배양검사에서 세균이 배양되는 경우를 “병원발병 의료관련감염(Hospital-acquired infection)”으로, 입원후 48시간 이내 감염질환이 진단된 경우 “지역사회확산감염(Community-acquired infection)”, 발병 전 90일 이내 입원을 하였거나, 외래에서 정맥주사 또는 항암치료를 받았거나, 요양원 또는 요양병원에 거주하였거나, 30일 이내에 혈액투석 또는 자가 창상치료를 했던 경우를 “지역사회발생 의료관련감염(Community-onset Healthcare-associated infection)”으로 정의하였다.

2) 결과변수

본 연구의 일차 결과변수는 30일 이내 사망률이었으며 30일 이내 사망률은 “혈액 균 배양검사상 ESBL생성 E. coli 또는 K. pneumoniae 균주 첫 양성 판정일로부터 30일 이내 어떠한 사유에 의해서든 발생한 사망(all-cause mortality)”으로 정의하였다. 이차 결과변수는 7일, 14일 사망률, 균혈증 관련 사망률, 미생물학적 증상 지속률, 미생물학적 치료 성공까지 걸린 기간, 균혈증 발생 후부터 퇴원까지의 재원기간, 균혈증 진단 이후 사망발생까지의 기간, 치료관련 합병증 발생률 등 이었으며 자세한 정의는 아래와 같다 (표 8).
표 8. 균혈증 결과변수의 정의

<table>
<thead>
<tr>
<th>결과지표</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>1차 결과변수</td>
<td>혈액 균 배양검사상 ESBL생성 E. coli 또는 K. pneumoniae 균주 첫 양성판정일로부터 30일 이내 어떠한 사유에 의해서든 발생한 사망(all-cause mortality)</td>
</tr>
<tr>
<td>2차 결과변수</td>
<td>혈액 균 배양검사상 ESBL생성 E. coli 또는 K. pneumoniae 균주 첫 양성판정일로부터 7/14일 이내 어떠한 사유에 의해서든 발생한 사망(all-cause mortality)</td>
</tr>
<tr>
<td>균혈증 관련 사망률</td>
<td>혈액 균 배양검사상 ESBL생성 E. coli 또는 K. pneumoniae 균주 첫 양성판정일로부터 7/14일 이내 동 감염과 관련하여 발생한 사망(attributable mortality)</td>
</tr>
<tr>
<td>균혈증 지속률</td>
<td>첫 경험적 약물치료 5일 경과 후에도 혈액 균 배양검사에서 양성이 지속되는 경우</td>
</tr>
<tr>
<td>치료 성공까지 기간</td>
<td>첫 경험적 약물치료일로부터 미생물학적 치료 성공까지 걸린 기간</td>
</tr>
<tr>
<td>재원기간</td>
<td>균혈증 발생 후부터 퇴원까지의 기간</td>
</tr>
<tr>
<td>생존기간</td>
<td>균혈증 진단 이후 사망발생 또는 추적 종료까지의 기간</td>
</tr>
<tr>
<td>합병증 발생률</td>
<td>1) 치료약제 변경을 요구하는 과민반응 (약물발진, 발열, 경련성발작, Encephalopathy, Anaphylaxis, 신독성, 간독성 등) 2) 약물유발성 혈소판감소증(Drug-Induced cytopenia) 3) CD(Clostridium difficile) associated diarrhea치료관련 합병증 발생으로 인한 치료중단 여부 등</td>
</tr>
</tbody>
</table>

다. 통계분석 방법

ESBL 생성 장내세균에 의한 균혈증 환자에서 항생제 사용 및 미생물검사 현황을 조사 하고, 카바페넴과 대안 항생제 요법(BL/BLIs)간 임상적 치료성과를 비교 분석하였다. 항생제 사용방법의 선택 및 치료 결과에 있어 환자의 임상적 특성이 영향을 줄 수 있으므로, 본 연구의 선정/제외 기준에 부합하는 전체대상자 대상 기본분석과 환자의 임상적 특성을 "표준화된 역량을 가중치(stabilized Inverse Probability of Treatment Weighting, stabilized IPTW)"로 보정하여 비교분석하는 방법을 통한 분석을 함께 시행하였다(Sturmer, 2014). IPTW 방법은 추정된 성향점을 사용하여 목표모 집단의 유사모집단을 만드는 방법으로, 추정된 성향점수의 가중치를 치료군과 대조군에 부여하는 방식이다(한국보건의료연구원, 2013).

선형연구 고찰 및 전체회의를 통해 기본분석에서 통계적으로 차이를 보이는 변수를 고려하여 항생제 선택에 영향을 줄 수 있는 변수를 선정하였으며, 선정된 변수인 성별, 연령, 48시간 이내 증상발현, 감염경로, 감염유형, 폐질환, 심장질환, APACHE II 점수(Knaus, 1985), CCI 점수(Charlson, 1987)를 통해 성향점을 추정하였다. IPTW 성향점수 가중치 방법을 적용한 대상자에서 표준화된 평균치
연구방법

(standardized mean difference of means, STD)를 통해 기본 특성 분포가 유사해졌는지를 확인하였다(표준화 차이 10% 기준).

이분형 변수는 카이제곱분석을 시행하였으며(N, %)로 제시하였다. 연속형 변수는 모수 검정(t-test) 또는 비모수 검정(Willcoxon test)에 따라 평균±표준편차 또는 중위값(q1, q3)으로 제시하였다. 항생제 사용에 따른 사망발생위험은 콕스비례위험모형(Cox proportional hazard model)으로 분석하였으며, 비례가정은 log-minus-log 생존그림을 이용하여 평가하였다. 위험비(Hazard ratio, HR)는 95% 신뢰구간(Confidence interval, CI)과 유의확률(p-value)을 함께 제시하였으며, 공변량으로 보정하지 않은 위험비(unadjusted HR)와 공변량을 보정한 위험비(Adjusted HR)를 함께 제시하였다.

모든 통계분석은 SAS 9.4 프로그램을 사용하여 수행하였다.

2.2. 상부요로감염

가. 자료원

2011년 1월 1일~2014년 12월 31일(4개년도) 사이에 소변 미생물 배양 검사에서 ESBL생성 E. coli 또는 K. pneumoniae 양성으로 판정된 상부요로감염(요관염, 신우신염) 입원환자를 대상으로 등록하였다.

그림 4. 요로감염 환자의 대상 모집 설계

연구대상자의 선정제외 기준은 아래와 같다(표 9).
표 9. 상부요로감염환자 선정제외 기준

<table>
<thead>
<tr>
<th>선정기준</th>
<th>배제기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>소변 미생물 배양 검사에서 생성 ESBL E. coli 또는 K. pneumoniae 양성으로 판정된 첫 번째 episode 상부요로감염 신우신염 입원환자 만 18세 이하인 경우 입산부</td>
<td></td>
</tr>
<tr>
<td>요로 이외에 다른 감염 존재 균혈증 제외 진단시 도뇨관을 보유하고 있는 환자 경험적 요법 및 확정적 요법 모두 동정된 균주에 감수성이 없는 경우 경험적 요법이 감수성이 없고, 확정적 요법이 48시간 미만으로 투약된 경우 경험적 요법이 감수성이 없고, 확정적 요법이 48시간 미만으로 투약된 경우 경험적 요법이 감수성이 없고, 확정적 요법이 48시간 미만으로 투약된 경우</td>
<td></td>
</tr>
<tr>
<td>신우 신염 (요관염) 임산부 요로이외의 다른 감염 존재 균혈증 제외 진단시 도뇨관을 보유하고 있는 환자 경험적 요법 및 확정적 요법 모두 동정된 균주에 감수성이 없는 경우 경험적 요법이 감수성이 없고, 확정적 요법이 48시간 미만으로 투약된 경우 경험적 요법이 감수성이 없고, 확정적 요법이 48시간 미만으로 투약된 경우</td>
<td></td>
</tr>
<tr>
<td>추적관찰기간동안 달 중복감염이 발생한 경우</td>
<td></td>
</tr>
</tbody>
</table>

나. 변수의 정의

1) 수집변수

관련 선행연구 검토 및 전체 연구진 회의를 통하여 자료수집을 위한 증례기록지를 개발하였다(부록 3.2). 증례기록지의 주요 내용은 환자 기본정보, 동반상병 처치 및 중증도, 감염관련정보, 항생제사용정보, 결과변수관련사항으로 구성되어 있으며 관련 변수의 구체적인 내용은 아래와 같다(표 10).

표 10. 요로감염 수집변수

<table>
<thead>
<tr>
<th>결과지표</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>환자기본정보</td>
<td>연령, 성별, 입원일자, 퇴원일자, 배양검사 처방일시, 배양검사 양성판정일시</td>
</tr>
<tr>
<td>동반상병, 처치 및 중증도</td>
<td>Charlson Comorbidity Index (CCI), 복합요로감염 여부, 수술력(최근 3개월 이내), 화학치료력(최근 3개월 이내), 방사선치료력(최근 3개월 이내), 입원여부(최근 3개월 이내), immune suppressive agent 사용력(최근 3개월 이내), prior antibiotics 사용력(이전 30일 이내)</td>
</tr>
<tr>
<td>감염 관련</td>
<td>감염경로(Community-acquired, healthcare-associated, Hospital-acquired)</td>
</tr>
</tbody>
</table>
2) 결과변수

본 연구의 일차 결과변수는 조기 임상적 관해율이었으며 항생제 치료 이후 시간 72이내에 해열되고 증상이 사라지는 것으로 정의하였다.

이차 결과변수는 임상적 치료실패율 미생물학적 치료실패율 사망률, 요로감염 관련 사망률, 요로감염 진단 후 병원 재원일수, 진단 이후 사망발생까지의 기간, 치료관련 합병증 발생률 등이었으며 결과지표의 자세한 조작적 정의는 아래와 같다 (표 11).

<table>
<thead>
<tr>
<th>결과변수</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>조기 임상적 관해율</td>
<td>첫 항생제 치료 이후 72시간 이내에 해열되고 증상이 사라짐</td>
</tr>
</tbody>
</table>

표 11. 요로감염 결과변수의 정의
다. 통계분석 방법

본 연구의 환자자료 분석을 위한 통계분석은 항생제 사용방법의 선택에 있어 환자의 임상적 특성이 영향을 줄 수 있으므로, 연구의 선정/제외 기준에 부합하는 전체대상자 대상 기본분석과 환자의 임상적 특성을 "표준화된 역확률 가중치(stabilized Inverse Probability of Treatment Weighting, stabilized IPTW)" 방법을 통해 보정한 비교분석을 함께 시행하였다(Sturmer, 2014). IPTW 방법은 추정된 성향점수를 사용하여 목표 모집단의 유사모집단을 만드는 방법으로, 추정된 성향점수의 가중치를 치료군과 대조군에 부여하는 방식이다(한국보건의료연구원, 2013).

선행연구 고찰 및 전체회의를 통해 기본분석에서 통계학적으로 차이를 보이는 변수를 고려하여 항생제 선택에 영향을 줄 수 있는 변수를 선정하였으며, 선정된 성별, 나이, 감염경로, 감염병소, 이전 요로감염여부, APACHE II 점수(Knaus, 1985), CCI 점수(Charlson, 1987)를 통해 성향점을 추정하였다.

항생제 사용에 따른 조기 임상적 관해는 로지스틱 회귀분석(Logistic regression analysis)으로 분석하였다. 오즈비(Odds ratio, OR)는 95% 신뢰구간(Confidence interval, CI)과 유의확률(p-value)을 함께 제시하였으며, 공변량으로 보정하지 않은 오
2.3. 개인정보보호 및 연구윤리심의위원회 심의

본 연구는 한국보건의료연구원 연구윤리위원회의 승인을 받았다(NECA IRB 15-001). 또한 후향적 자료구축을 위하여 4개 병원 연구윤리심의위원회의 승인을 받은 후에 자료를 수집하였다.
연구결과

1. 체계적 문헌고찰

1.1. 균혈증

가. 문헌선정결과

본 연구에서는 ESBL 생성 장내세균에 의한 균혈증 환자에서 카바페넴과 기타항생제의 치료성과를 비교하기 위하여 체계적 문헌고찰을 수행하였다. 국내외 10개 전자데이터베이스를 통해 총 3,499편의 문헌이 검색되었으며, 중복문헌 제거 후 2,818편의 문헌이 1차 문헌 선택/배제 과정에 포함되었다. 제목 및 초록 검토 과정을 거쳐 126편의 문헌을 관련 문헌으로 선택하였고 관련 문헌에 대해서는 원문 검토를 실시하였다. 원문 검토 후 문헌 선택/배제 기준에 따라 30편의 문헌을 최종 선택문헌으로 선정하였다. 연구 수행 과정에서 데이터베이스 최종 검색일 이후 출판된 문헌 중 관련 문헌 1편을 확득하여 이를 수기검색으로 추가하였고, 이에 따라 31편의 문헌(국외 31, 국내 0)을 동 연구의 최종선택문헌으로 확정하였다. 문헌 선택/배제 과정에 따른 문헌선정 흐름도는 아래 그림 5와 같으며, 최종 선택문헌 목록은 〈부록 1.2〉에 제시하였다.
3. 연구결과

그림 5. 균혈증 문헌선정 흐름도

나. 선정문헌의 일반적 특성

연구에 포함된 환자 수는 총 4,337명이었으며, 이 중 ESBL 양성 환자 수는 3,098명이었다. 포함환자의 성비율을 보고하지 않은 2편의 문헌을 제외하고, 29편 문헌에 포함된 ESBL 생성 환자 2,926명 중 남성과 여성의 비율은 각각 59.7%(n=1,748)와 40.3%(n=1,178)이었다. 평균 연령을 보고하지 않은 10편의 문헌을 제외하고, 21편의
문헌에서 ESBL 생성 환자의 평균 연령 범위는 38.3~74.1세이었으며, 1편의 문헌에서 3
명의 신생아를, 또 다른 1편의 문헌에서 7세 이상의 소아환자를 포함하였다. 포함환자의
균주와 관련하여 20편(64.5%)의 문헌이 E.coli로 인한 균혈증을 보고하였으며, 18편
(58.1%)의 문헌에서는 K.pneumoniae로 인한 균혈증을 포함하였다. 그 외 보고된 균주
로는 E.cloacae, P. mirabilis가 있었다. 연구에 포함된 환자의 자료수집은 27편
(83.9%)의 문헌에서 후향적으로 수집되었으며, 4편의 연구에서만 전향적으로 환자의 자
료를 수집하였다.

연구에 포함된 31편 문헌의 기타 특성은 아래 표 12에 요약하여 제시하였다.
<table>
<thead>
<tr>
<th>저자</th>
<th>출판 연도</th>
<th>연구 국가</th>
<th>수집기간</th>
<th>연구 디자인</th>
<th>연구 대상자</th>
<th>총 환자 수</th>
<th>ESBL (+) 환자 수</th>
<th>남/여</th>
<th>평균 연령</th>
<th>군주 (N)</th>
<th>감염경로 (N)</th>
<th>결과지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamma</td>
<td>2015</td>
<td>미국</td>
<td>2007. 1 - 2014. 4</td>
<td>후향적 코호트</td>
<td>ESBL (+) 균혈증</td>
<td>213</td>
<td>213</td>
<td>131/82</td>
<td>48.2</td>
<td>NR</td>
<td>NR</td>
<td>14일 전체 사망 (E)</td>
</tr>
<tr>
<td>Falcone</td>
<td>2014</td>
<td>이탈리아</td>
<td>2009. 11 - 2010. 12</td>
<td>전향적 코호트</td>
<td>ESBL (+) 균혈증</td>
<td>94</td>
<td>94</td>
<td>61/33</td>
<td>59</td>
<td>E.coli (61), K.pneumoniae (26), 기타 (7)</td>
<td>HCA (16), Unknown (44)</td>
<td>21일 사망 (E), ICU 입원, 재원기간</td>
</tr>
<tr>
<td>Pilmis</td>
<td>2014</td>
<td>프랑스</td>
<td>2011</td>
<td>후향적 코호트</td>
<td>ESBL (+) 균혈증 또는 요로감염</td>
<td>53</td>
<td>53</td>
<td>25/27</td>
<td>NR</td>
<td>E.coli (14), K.pneumoniae (18), E.colaceae (21)</td>
<td>NR</td>
<td>30일 임상적/미생물학적 재발, 부작용, 재발일, 미생물학적 치료일</td>
</tr>
<tr>
<td>Tsai</td>
<td>2014</td>
<td>대만</td>
<td>2005. 1 - 2012. 12</td>
<td>후향적 코호트</td>
<td>ESBL (+)</td>
<td>47</td>
<td>47</td>
<td>29/18</td>
<td>74.1</td>
<td>P.mirabilis (47)</td>
<td>HA (15), NR (32)</td>
<td>군혈증 관련 사망, 30일 사망, 병원내 사망 (D)</td>
</tr>
<tr>
<td>Yang</td>
<td>2014</td>
<td>대만</td>
<td>2001. 1 - 2009. 12</td>
<td>후향적 코호트</td>
<td>ESBL (+)</td>
<td>64</td>
<td>64</td>
<td>47/17</td>
<td>65</td>
<td>K.pneumoniae (64)</td>
<td>Nosocomial (64)</td>
<td>14일 사망 (D)</td>
</tr>
<tr>
<td>저자</td>
<td>출판 연도</td>
<td>연구 국가</td>
<td>수집기간</td>
<td>연구 대지역</td>
<td>연구 대상자</td>
<td>총 환자 수</td>
<td>ESBL (+) 환자 수</td>
<td>남/여</td>
<td>평균 연령</td>
<td>균주 (N)</td>
<td>감염경로 (N)</td>
<td>결과지표</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>-----------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Kang</td>
<td>2013</td>
<td>한국</td>
<td>2009. 1 - 2011. 5</td>
<td>지역사회감염 ESBL(+) 균혈증</td>
<td>92</td>
<td>92</td>
<td>49/43</td>
<td>NR</td>
<td>E.coli (92)</td>
<td>HCA (52), CA (40)</td>
<td>30일 사망 (E, D)</td>
<td></td>
</tr>
<tr>
<td>Lee</td>
<td>2013</td>
<td>대만</td>
<td>2001-2008</td>
<td>후향적 코호트 ESBL(+) 균혈증</td>
<td>197</td>
<td>197</td>
<td>99/79</td>
<td>중위값 70</td>
<td>E.coli, K.pneumoniae, E.colace</td>
<td>HA (127),CA (51)</td>
<td>전체 사망, 균혈증 관련 사망, 30일 사망 (E, D)</td>
<td></td>
</tr>
<tr>
<td>To</td>
<td>2013</td>
<td>중국</td>
<td>2007. 1 - 2008. 12</td>
<td>후향적 코호트 ESBL(+) 균혈증</td>
<td>204</td>
<td>204</td>
<td>104/100</td>
<td>NR</td>
<td>E.coli (204)</td>
<td>HA (187),CA (17)</td>
<td>30일 사망 (E,D)</td>
<td></td>
</tr>
<tr>
<td>Chopra*</td>
<td>2012</td>
<td>미국</td>
<td>2005. 1 - 2007. 12</td>
<td>후향적 코호트 ESBL(+) 균혈증</td>
<td>145</td>
<td>145</td>
<td>71/74</td>
<td>66</td>
<td>E.coli (24), K.pneumoniae(12 1)</td>
<td>NR</td>
<td>사망 (E, D), 재발, 재원기간</td>
<td></td>
</tr>
<tr>
<td>Chung</td>
<td>2012</td>
<td>대만</td>
<td>2005. 1 - 2010. 12</td>
<td>후향적 코호트 E.coli로 인한 균혈증</td>
<td>122</td>
<td>122</td>
<td>64/58</td>
<td>64.3</td>
<td>E.coli (122)</td>
<td>HA (57), CA (65)</td>
<td>사망 (D)</td>
<td></td>
</tr>
<tr>
<td>Kang</td>
<td>2012</td>
<td>한국</td>
<td>2008. 1 - 2010. 12</td>
<td>후향적 코호트 E.coli, 또는 K.pneumoniae로 인한 균혈증</td>
<td>114</td>
<td>114</td>
<td>NR</td>
<td>NR</td>
<td>E.coli (78), K.pneumoniae (36)</td>
<td>NR</td>
<td>30일 사망 (E), 3일, 7일 임상적 재발, 치료실패</td>
<td></td>
</tr>
<tr>
<td>저자</td>
<td>출판 연도</td>
<td>연구 국가</td>
<td>수집기간</td>
<td>연구 대상인</td>
<td>연구 대상자</td>
<td>총 환자 수</td>
<td>ESBL (+) 환자 수</td>
<td>남/여</td>
<td>평균 연령</td>
<td>균주 (N)</td>
<td>감염경로 (N)</td>
<td>결과지표</td>
</tr>
<tr>
<td>--------</td>
<td>----------</td>
<td>----------</td>
<td>----------------</td>
<td>----------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>------</td>
<td>-----------</td>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Peralta</td>
<td>2012</td>
<td>스페인</td>
<td>2004. 1 - 2008. 12</td>
<td>후향적 코호트</td>
<td>ESBL (+) 균혈증</td>
<td>387</td>
<td>387</td>
<td>270/117</td>
<td>70.3</td>
<td>E.coli (343), K.pneumoniae (44)</td>
<td>Nosocomial (140), HCA (137), CA (110)</td>
<td>사망 (E)</td>
</tr>
<tr>
<td>Ferrandez</td>
<td>2011</td>
<td>스페인</td>
<td>2000. 1 - 2006. 12</td>
<td>후향적 환자- 대조군 연구</td>
<td>E.coli 또는 K. pneumoniae로 인한 균혈증</td>
<td>212</td>
<td>53</td>
<td>36/17</td>
<td>69.1</td>
<td>E.coli (42), K.pneumoniae (11)</td>
<td>HA (25), CA (19)</td>
<td>사망 (E, D)</td>
</tr>
<tr>
<td>Gudiol</td>
<td>2011</td>
<td>스페인</td>
<td>2006. 1 - 2009. 12</td>
<td>전향적 코호트</td>
<td>암환자 중 다제내성 그람음성균으로 인한 균혈증</td>
<td>363</td>
<td>23</td>
<td>NR</td>
<td>NR</td>
<td>E.coli (20), K.pneumoniae (2), E.cloacae (1)</td>
<td>NR</td>
<td>사망 (E)</td>
</tr>
<tr>
<td>Kang</td>
<td>2011</td>
<td>한국</td>
<td>2010. 1 - 2012. 5</td>
<td>후향적 코호트</td>
<td>균혈증으로 진단받은 암환자</td>
<td>350</td>
<td>95</td>
<td>55/40</td>
<td>55.9</td>
<td>E.coli (95)</td>
<td>Nosocomial (59), HCA (22), CA (14)</td>
<td>30일 사망 (E, D)</td>
</tr>
<tr>
<td>Lee</td>
<td>2011</td>
<td>대만</td>
<td>2001 - 2008</td>
<td>후향적 코호트</td>
<td>ESBL (+) E. cloacae로 인한 균혈증</td>
<td>206</td>
<td>121</td>
<td>68/53</td>
<td>63.1</td>
<td>E. cloacae (121)</td>
<td>Nosocomial (117), NR (5)</td>
<td>7일, 14일, 28일 균혈증 관련 사망 (E, D)</td>
</tr>
</tbody>
</table>
ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

<table>
<thead>
<tr>
<th>저자</th>
<th>출판 연도</th>
<th>연구 국가</th>
<th>수집기간</th>
<th>연구 대재인</th>
<th>연구 대상자</th>
<th>총 환자 수</th>
<th>ESBL (+) 환자 수</th>
<th>남/여</th>
<th>평균 연령</th>
<th>균주 (N)</th>
<th>감염경로 (N)</th>
<th>결과지표</th>
</tr>
</thead>
<tbody>
<tr>
<td>Qureshi*</td>
<td>2011</td>
<td>미국</td>
<td>2005 - 2008</td>
<td>후향적 코호트</td>
<td>E.colace로 인한 균혈증</td>
<td>169</td>
<td>26</td>
<td>13/13</td>
<td>NR</td>
<td>E.colace (26)</td>
<td>NR</td>
<td>28일 사망 (E), 96시간 임상적 실패</td>
</tr>
<tr>
<td>Rodriguez-Bano</td>
<td>2011</td>
<td>스페인</td>
<td>2001 - 2007</td>
<td>Post-hoc analysis</td>
<td>ESBL (+) 균혈증</td>
<td>192</td>
<td>192</td>
<td>104/70</td>
<td>NR</td>
<td>E.coli (192)</td>
<td>Nosocomial (85), NR (89)</td>
<td>7일, 14일, 30일 사망 (E, D), ICU 입원, 재원기간</td>
</tr>
<tr>
<td>Rosa</td>
<td>2011</td>
<td>이탈리아</td>
<td>2000. 1 - 2007. 12</td>
<td>후향적 코호트</td>
<td>ICU 입원기간동안 ESBL (+) 균혈증</td>
<td>128</td>
<td>128</td>
<td>90/38</td>
<td>63.5</td>
<td>E.coli (80), K.pneumoniae (28), P.mirabilis (20)</td>
<td>Nosocomial (57), HCA (33), CA (22)</td>
<td>21일 사망 (E)</td>
</tr>
<tr>
<td>Tuon*</td>
<td>2011</td>
<td>브라질</td>
<td>2006. 1 - 2009. 1</td>
<td>후향적 코호트</td>
<td>K.pneumoniae로 인한 균혈증</td>
<td>104</td>
<td>63</td>
<td>41/22</td>
<td>38.3</td>
<td>K.pneumoniae (63)</td>
<td>NR</td>
<td>사망 (D)</td>
</tr>
<tr>
<td>Chaubey*</td>
<td>2010</td>
<td>캐나다</td>
<td>2000. 1 - 2007. 12</td>
<td>후향적 코호트</td>
<td>ESBL (+) 균혈증</td>
<td>76, (에피소드 79)</td>
<td>76</td>
<td>44/35, (에피소드 기준)</td>
<td>중위값 70</td>
<td>E.coli (72), K.pneumoniae (7), (에피소드기준)</td>
<td>Nosocomial (24), HCA (33), CA (22)</td>
<td>사망 (E, D)</td>
</tr>
<tr>
<td>Tuon*</td>
<td>2010</td>
<td>브라질</td>
<td>2006. 1 - 2009. 1</td>
<td>후향적 코호트</td>
<td>장내세균으로 인한 균혈증</td>
<td>58</td>
<td>28</td>
<td>19/9</td>
<td>51.8</td>
<td>NR</td>
<td>NR</td>
<td>사망 (D)</td>
</tr>
<tr>
<td>Apisarnthanarak</td>
<td>2008</td>
<td>태국</td>
<td>2003. 7 - 2007. 12</td>
<td>후향적 코호트</td>
<td>지역사회감염 균혈증</td>
<td>144</td>
<td>36</td>
<td>18/18</td>
<td>54</td>
<td>E.coli (22), K.pneumoniae (12)</td>
<td>CA (144)</td>
<td>전체 사망 (E)</td>
</tr>
<tr>
<td>저자</td>
<td>출판 연도</td>
<td>연구 국가</td>
<td>수집기간</td>
<td>연구 대상인</td>
<td>연구 대상자</td>
<td>총 환자 수</td>
<td>ESBL (+) 환자 수</td>
<td>남/여</td>
<td>평균 연령</td>
<td>군주 (N)</td>
<td>감염경로 (N)</td>
<td>결과지표</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>----------------</td>
<td>-------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>Bin</td>
<td>2006</td>
<td>중국</td>
<td>2002. 10 - 2005. 4</td>
<td>전향적 코호트</td>
<td>병원감염 ESBL (+) 균혈증</td>
<td>22</td>
<td>22</td>
<td>9/13</td>
<td>18세이상</td>
<td>E.coli (22)</td>
<td>Nosocomial (22)</td>
<td>14일 사망 (E, D), 임상적 성공</td>
</tr>
<tr>
<td>Huang</td>
<td>2006</td>
<td>대만</td>
<td>2001. 1 - 2003. 12</td>
<td>후향적 코호트</td>
<td>E.coli 및 K.pneumoniae 이외 ESBL (+)로 인한 균혈증</td>
<td>54</td>
<td>54</td>
<td>34/20</td>
<td>62</td>
<td>E.colae (39), E.aerogenes (6), P.mirabilis (5), others (4)</td>
<td>Nosocomial (39), NR (15)</td>
<td>14일, 30일 사망 (D)</td>
</tr>
<tr>
<td>Lee</td>
<td>2006</td>
<td>대만</td>
<td>2004. 3 - 2005. 2</td>
<td>후향적 코호트</td>
<td>Flomoxef susceptible ESBL (+) 균혈증</td>
<td>27</td>
<td>27</td>
<td>13/14</td>
<td>NR</td>
<td>K.pneumoniae (27)</td>
<td>NR</td>
<td>14일 사망 (D)</td>
</tr>
<tr>
<td>Endimiani</td>
<td>2005</td>
<td>이탈리아</td>
<td>1997. 1 - 2004. 6</td>
<td>후향적 코호트</td>
<td>P.mirabilis로 인한 균혈증</td>
<td>25</td>
<td>9</td>
<td>7/2</td>
<td>70.9</td>
<td>P.mirabilis (9)</td>
<td>Nosocomial (3), NR (6)</td>
<td>사망 (D)</td>
</tr>
<tr>
<td>1차자</td>
<td>출판 연도</td>
<td>연구 국가</td>
<td>수집기간</td>
<td>연구 대상인</td>
<td>연구 대상자</td>
<td>총 환자수</td>
<td>ESBL (+) 환자수</td>
<td>남/여</td>
<td>평균 연령</td>
<td>균주 (N)</td>
<td>감염경로 (N)</td>
<td>결과지표</td>
</tr>
<tr>
<td>-------</td>
<td>---------</td>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>-------------</td>
<td>---------</td>
</tr>
<tr>
<td>Paterson 2004</td>
<td>남아프리카공화국, 대만, 호주, 아르헨티나, 미국, 벨기에, 터키</td>
<td>1996. 1 - 1997. 12</td>
<td>전향적 코호트</td>
<td>ESBL(+) K.pneumoniae로 인한 균혈증</td>
<td>71</td>
<td>71</td>
<td>42/29</td>
<td>7세 이상</td>
<td>K.pneumoniae (71)</td>
<td>NR</td>
<td>14일 사망 (D), 다제내성 균주에 의한 균혈증 발생</td>
<td></td>
</tr>
<tr>
<td>Du 2002</td>
<td>중국</td>
<td>1997. 1 - 1999. 12</td>
<td>후향적 코호트</td>
<td>병원감염 균혈증</td>
<td>85</td>
<td>23</td>
<td>13/10</td>
<td>49.7</td>
<td>E.coli (16), K.pneumoniae (7)</td>
<td>Nosocomial (23)</td>
<td>사망 (D)</td>
<td></td>
</tr>
</tbody>
</table>

다. 선정문헌의 비뚤림 위험

RoBANS version 2(김수영 등, 2013)를 이용한 비뚤림 위험 평가결과, 대상군 비교 가능성과 대상군 선정, 교란변수 영역에서 비뚤림 위험에 불확실한 것으로 평가되었다. 평가에 포함된 대부분의 연구가 동 연구의 핵심질문인 카바페넴과 기타 항생제를 비교하기 위해 설계된 연구가 아니었고, 따라서 동 연구의 주제에 부합하는 대상군 선정이 비뚤림 위험 없이 진행되었는지에 대해 판단을 내릴만한 정보가 부족하였다. 대상군 비교 가능성 확보 여부 및 이에 따른 교란변수 통제 여부와 관련한 정보도 대부분의 문헌에서 확인할 수 없었다. 노출측정과 평가자의 눈가림, 결과평가 항목과 관련하여서는 대부분의 문헌에서 관련 정보를 병원 내 전산진료기록부에서 획득하였고, 추출한 대부분 결과 지표 역시 사망률과 같이 병원 기록을 통해 비교적 명확하게 확인할 수 있는 지표로 한정되어 상대적으로 이 영역들에 대한 비뚤림 위험이 낮은 것으로 평가하였다. 전반적으로 관찰연구의 질을 평가할 때 중요하게 생각하는 선택비뚤림 영역인 대상군 비교가능 성과 대상군 선정, 교란변수 영역에서 비뚤림 위험이 높게 나타나 전체적인 방법론적 질은 낮은 것으로 판단된다(그림 6, 7).
라. 분석 결과

1) 경험적 요법

카바페넴과 기타 항생제의 치료 성과를 보고한 31편의 문헌 중 경험적 요법에서의 치료성과를 보고한 문헌은 17편이었으며, 이를 비교 약제에 따라 비카바페넴군, BL/BLIs 군, non-BL/BLIs군, cephalosporins군, quinolones군, aminoglycosides군으로 분류하여 관련 결과지표를 비교분석 하였다. 경험적 요법의 정의는 문헌에서 보고한 정의를 그대로 따랐고, 문헌에서 경험적 요법의 정의를 보고하지 않았으나 동 연구의 체계적 연구인 Vardakas 외(2012)의 체계적 문헌고찰에 포함된 문헌인 경우에는 이 문헌에서의 분류를 차용하였다.

(1) 전체 사망률

(가) 카바페넴군과 비카바페넴군의 비교
경험적 요법에서 카바페넴과 비카바페넴군의 전체 사망률 비교에 포함된 문헌은 모두 19편이었으며 총 포함 환자 수는 2,134명이었다. 비카바페넴군의 분류는 카바페넴계 항생제의 방편에 따라 문헌에서 사용한 기타 모든 항생제를 포함하는 것으로 정의하였으며, 문헌에서 항생제 치료를 받지 않은 환자를 보고한 경우에는 동 분석의 대상군에 해당하지 않는 것으로 판단하여 분석에서 제외하였다. 메타분석 실시 결과, 경험적 요법에서 카바페넴과 비카바페넴군간 전체 사망률에는 통계적으로 유의한 차이가 없었으며(O.R=0.84, 95% CI 0.54-1.32), 문헌간 통계적 이질성은 유의하게 나타났다(CHI²=42.89, df=17, P=0.0005, I²=60%). 약제간 비교설계 여부에 따라 구분한 하위군 분석 역시 약제비교설계 연구 (O.R=0.46, 95% CI 0.15-1.44)와 그렇지 않은 연구 (O.R=1.03, 95% CI 0.66-1.63) 모두에서 카바페넴군과 비카바페넴군간 사망률에 유의한 차이가 나타나지 않았다. 문헌간 통계적 이질성은 약제비교설계 연구(CHI²=8.42, df=2, P=0.01, I²=76%)와 그렇지 않은 연구(CHI²=27.26, df=14, P=0.02, I²=49%) 모두에서 유의하게 나타났다(그림 8).

그림 8. 균혈증 경험적 요법에서 카바페넴군과 비카바페넴군의 전체 사망률 비교
경험적 요법에서 사용한 카바페넴과 비카바페넴 약제 사용의 적절성 여부를 문헌에서 확인하여 적절한 치료를 수행한 문헌만을 분리하여 두 군간 전체 사망률에 대한 민감도 분석을 실시하였다. 사용 약제의 적절성 여부는 문헌에서 제시한 정의에 따랐으며, 약제 사용의 적절성 여부를 기술하지 않은 문헌인 경우에는 문헌에서 제시한 감수성 결과를 CLSI(Clinical and Laboratory Standards Institute, 2012) 기준에 따라 분류하여 적절성 여부를 판단하였다. 적절한 치료가 20% 이상 포함된 연구는 적절한 약제와 부적절한 약제가 혼합 사용된 경우로 분류하여 동 민감도 분석에서 제외하였다. 민감도분석 결과, 적절한 치료를 수행한 연구들에서 카바페넴군과 비카바페넴군 간 전체 사망률에는 유의한 차이가 없는 것으로 나타났으며(OR=0.68, 95% CI 0.26-1.81), 문헌간 통계적 이질성은 유의하게 나타났다(Chi²=28.01, df=7, P=0.0002, I²=75%). 약제간 비교설계 여부에 따라 구분한 하위군 분석에서, 적절한 치료를 수행한 약제비교세팅 연구들에서는 카바페넴군과 비카바페넴군간 전체 사망률에 유의한 차이가 있었으나(OR=0.28, 95% CI 0.10-0.80), 문헌간 통계적 이질성도 유의한 것으로 나타났다(Chi²=2.30, df=1, P=0.13, I²=57%). 적절한 치료를 수행하였으나 약제비교세팅이 아닌 연구들에서는 두 군간 전체 사망률에 유의한 차이가 없었으며(OR=1.07, 95% CI 0.34-3.30), 문헌간 통계적 이질성이 유의하게 나타났다(Chi²=14.26, df=5, P=0.01, I²=65%(그림 9).
연구결과

3. 연구결과

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Carbenem</th>
<th>Non-carbenem</th>
<th>Odd Ratio</th>
<th>M-H Random 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee 2013</td>
<td>15</td>
<td>84</td>
<td>10</td>
<td>0.15 (0.05, 0.48)</td>
<td>2013</td>
</tr>
<tr>
<td>Tamura 2015</td>
<td>9</td>
<td>110</td>
<td>17</td>
<td>0.45 (0.19, 1.08)</td>
<td>2015</td>
</tr>
<tr>
<td>Soltanizadeh (95% CI)</td>
<td>194</td>
<td>129</td>
<td>31.8%</td>
<td>0.28 (0.10, 0.88)</td>
<td></td>
</tr>
<tr>
<td>Total events</td>
<td>24</td>
<td>37</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: Tau² = 0.34; Chi² = 2.32, df = 1 (P = 0.13), I² = 51%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect Z = 2.38 (P = 0.02)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.2.2. 경험적 요법에서 카바페넴군과 비카바페넴군의 전체 사망률 비교: 약제 사용 적절성 여부에 따른 민감도 분석

그림 9. 균혈증 경험적 요법에서 카바페넴군과 비카바페넴군의 전체 사망률 비교: 약제 사용 적절성 여부에 따른 민감도 분석

경험적 요법에서 카바페넴군과 비카바페넴군의 전체 사망률 분석에 포함된 19편 문헌에 대한 contour-enhanced funnel plot은 아래 그림 10과 같다. 아래 그림에서 plot의 오른쪽 부분에 연구들이 결측되었으나, 통계적 유의성이 낮은 영역과 높은 영역 모두에서 연구들이 결측되었으므로 plot의 비대칭성이 출판 비뚤림에 의한 것이라고 단정 할 수는 없었다. 추가적으로 수행한 Egger 검정에서는 유의확률이 0.027로 추정되어 소규모 연구 영향의 존재 가능성이 있을 것으로 판단되었다.
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법 간 임상효과 비교연구

그림 10. 균혈증 경험적 요법에서 카바페넴군과 비카바페넴군의 전체 사망률 비교의

 contour-enhanced funnel plot

(나) 카바페넴군과 BL/BLIs군의 비교

경험적 요법에서 카바페넴군과 BL/BLIs군간 전체 사망률 비교를 위하여 메타분석에 포함된 문헌은 총 15편이었으며, 총 포함 환자수는 1,044명이었다. 메타분석 실시 결과, 전체 사망률에 대한 통합 오즈비는 1.01(95% CI 0.67-1.52)로 두 군간 통계적으로 유의한 차이가 없었으며, 문헌간 통계적 이질성도 유의한 차이를 보이지 않았다 (Chi²=16.10, df=13, P=0.24, I²=19%). 약제간 비교를 위한 연구 설계 여부에 따라 실시한 하위군 분석에서도 두 그룹 모두에서 카바페넴군과 BL/BLIs군간 전체 사망률에 유의한 차이가 없는 것으로 나타났다(약제비교세팅연구 OR=0.75, 95% CI 0.27-2.10; 약제비교세팅이 아닌 연구 OR=1.18, 95% CI 0.76-1.83). 하위군 분석에서 문헌간 통계적 이질성은 약제비교세팅 연구들에서는 유의하게 나타났으며(Chi²=2.65, df=1, P=0.10, I²=62%), 약제비교세팅이 아닌 연구들에서는 유의하지 않았다(Chi²=11.73, df=11, P=0.38, I²=6%)(그림 11).
그림 11. 균혈증 경험적 요법에서 카바페넴군과 BL/BLIs군의 전체 사망률 비교

동 결과 변수 분석에 포함된 15편 문헌에 대한 contour-enhanced funnel plot은 아래 그림 12와 같으며, 시각적으로 고효 분포를 나타내는 것으로 판단하였다. Egger 검정에서 소규모 연구 영향의 가능성은 존재하지 않는 것으로 나타났다(P=0.381).
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

그림 12. 균혈증 경험적 요법에서 카바페넴군과 BL/BLIs군 전체 사망률 비교의 contour-enhanced funnel plot

(다) 카바페넴군과 non-BL/BLIs군의 비교

경험적 요법에서 카바페넴군과 non-BL/BLIs군의 전체 사망률 비교에 포함된 문헌은 모두 15편이었으며 총 포함 환자수는 1,228명이었다. Non-BL/BLIs군의 분류는 카바페넴 및 BL/BLIs계 항생제 외, 문헌에서 사용한 기타 모든 항생제를 포함하는 것으로 정의하였으며, 문헌에서 non-BL/BLIs군을 따로 정의하여 보고한 경우에는 그 값을 그대로 사용하였다. 분석 결과, 통합 오즈비는 0.73 (95% CI 0.40-1.34)으로 나타났으나 이는 통계적으로 유의한 차이가 아니었으며, 문헌간 통계적 이질성은 유의한 것으로 나타났다 (Chi²=35.83, df=13, P=0.0006, I²=64%). 약제간 비교세팅 여부에 따른 하위군 분석에서, 약제비교세팅이 아닌 14편의 연구들에서는 카바페넴군과 non-BL/BLIs군간 전체 사망률에는 통계적으로 유의한 차이가 없었고(OR=0.89, 95% CI 0.50-1.57), 문헌간 통계적 이질성은 유의한 것으로 나타났다(Chi²=25.62, df=12, P=0.01, I²=53%). 약제비교세팅 연구에 포함된 1편(Lee, 2013)의 문헌에서는 카바페넴군이 non-BL/BLIs군과 비교하여 사망률 오즈비가 0.15(95% CI 0.05-0.46)로 보고되었다(그림 13).
그림 13. 균혈증 경험적 요법에서 카바페넴군과 non-BL/BLIs군의 전체 사망률 비교

동 메타분석에 대한 contour-enhanced funnel plot의 그림을 아래에 제시하였으며 (그림 14). 시각적으로 곤란 분포를 나타내는 것으로 판단하였다. Egger 검정의 유의확률은 0.246로 추정되어 소규모 연구 영향의 가능성은 나타나지 않았다.
그림 14. 균혈증 경험적 요법에서 카바페넴군과 non-BL/BLIs군 전체 사망률 비교의 contour-funnel plot

(라) 카바페넴군과 cephalosporins군의 비교
총 12편의 문헌, 819명의 환자가 경험적 요법에서 카바페넴군과 cephalosporins군간 전체 사망률 비교 분석에 포함되었다. 분석결과, 통합 오즈비는 0.52 (95% CI 0.24-1.10)로 나타났으나 이는 통계적으로 유의한 차이가 아니었으며, 문헌간 통계적 이질성은 유의한 것으로 나타났다(Chi²=35.51, df=10, P=0.0001, I²=72%). 약제간 비교 세팅 여부에 따른 하위군 분석에서, 약제비교세팅이 아닌 11편의 연구들에서는 카바페넴군과 cephalosporins군간 전체 사망률에는 통계적으로 유의한 차이가 없었고(OR=0.63, 95% CI 0.30-1.33). 문헌간 통계적 이질성은 유의한 것으로 나타났다(Chi²=26.73, df=9, P=0.002, I²=66%). 약제비교세팅 연구에 포함된 1편(Lee, 2013)의 문헌에서는 카바페넴군이 cephalosporins군과 비교하여 사망률 오즈비가 0.15(95% CI 0.05, 0.46)로 보고되었다(그림 15).
연구결과

군혈증 경험적 요법에서 카바페넴군과 Cephalosporins군의 전체 사망률 비교

Cephalosporins의 세대 구분에 따른 추가 하위군 분석을 위해 문헌에서 사용된 cephalosporins 항생제를 3세대, 4세대로 구분하여 분류하였다. Lee 등(2011)과 Kang 등(2011)의 문헌은 3, 4세대 cephalosporins군의 사망률을 모두 보고하였고, 동분석에서는 데이터의 중복사용을 피하기 위해 세대군의 사망률을 비교하였다. 카바페넴과 4세대 cephalosporin군의 전체 사망률 비교에서는 두 군간 유의한 차이가 나타나지 않았으며(OR=0.72, 95% CI 0.22-2.32), 문헌간 통계적 이질성은 유의하게 나타났다(Chi²=11.43, df=3, P=0.010, I²=74%). 3세대 cephalosporin군과의 비교에서 역시 두 군간 전체 사망률에는 유의한 차이가 없었고(OR=0.26, 95% CI 0.00-24.43), 문헌간 통계적 이질성은 유의하게 보고되었다(Chi²=15.47, df=1, P<0.0001, I²=94%). 3세대와 4세대가 혼합된 cephalosporins를 포함한 연구들에서도 위의 두 하위군과 동일하게 전체 사망률 비교에서는 유의한 차이가 없었으며(OR=0.52, 95% CI 0.11-1.47), 문헌간 통계적 이질성은 유의하게 나타났다(Chi²=10.74, df=4, P=0.03, I²=63%)(그림 16).
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

그림 16. 균혈증 경험적 요법에서 카바페넴군과 Cephalosporins군의 전체 사망률 비교: 세대 구분에 따른 하위군 분석

Cephalosporins 세대 구분에 따른 하위군 분석 시 데이터 중복사용을 피하기 위해 제외하였던 2편 문헌(Lee 와 2011, Kang 와 2011)에서 3세대 cephalosporins군 사망률 자료를 추가로 추출하여 카바페넴군과 3세대 cephalosporins군간 전체 사망률에 대한 민감도 분석을 실시하였다. 총 5편의 문헌을 메타분석한 결과, 경험적 요법에서 카바페넴군과 3세대 cephalosporin군간 전체 사망률에는 통계적으로 유의한 차이가 없었으며(OR=0.59, 95% CI 0.13-2.76), 문헌간 통계적 이질성이 유의하게 나타났다(Chi²=15.20 df=3, P=0.002, I²=80%)(그림 17). 카바페넴군과 4세대 cephalosporins군에서의 전체 사망률 비교는 위 그림16의 cephalosporins 세대 구분에 따른 하위군 분석 결과와 같으므로 따로 민감도 분석을 실시하지 않았다.
그림 17. 균혈증 경험적 요법에서 카바페넴군과 Cephalosporins군의 전체 사망률 비교: 3세대 Cephalosporins군 데이터 추가에 따른 민감도 분석

경험적 요법에서 카바페넴군과 cephalosporins군의 전체 사망률 메타분석에 대한 contour-enhanced funnel plot은 아래 그림 18과 같다. 아래 그림에서 plot의 오른쪽 부분에 연구들이 결측되었으나, 통계적 유의성이 낮은 영역과 높은 영역 모두에서 연구들이 결측되었으므로 plot의 비대칭성이 출판 비뚤림에 의한 것이라고 단정하기는 어렵다. 추가적으로 수행한 Egger test에서는 유의확률이 0.018로 추정되어 소규모 연구 영향의 가능성이 존재하는 것으로 판단되었다.
그림 18. 균혈증 경험적 요법에서 카바페넴군과 Cephalosporins군 전체 사망률 비교의 contour-enhanced funnel plot

(마) 카바페넴군과 quinolones군의 비교
총 11편의 문헌, 460명의 환자가 경험적 요법에서 카바페넴군과 quinolones군의 전체 사망률 비교분석에 포함되었다. 메타분석 결과, 두 군간 전체 사망률에는 통계적으로 유의한 차이가 없는 것으로 나타났으며(OR=0.56, 95% CI 0.22-1.40), 문헌간 통계적 이질성이 유의하게 나타났다(Chi²=19.74, df=10, P=0.03, I²=49%)(그림 19).
그림 19. 균혈증 경험적 요법에서 카바페넴군과 Quinolones군의 전체 사망률 비교

동 결과지표의 메타분석에 대한 contour-enhanced funnel plot을 아래 그림 20에 제시하였고, 시각적으로 고른 분포를 나타내는 것으로 판단하였다. Egger 검정에서 소규모 연구 영향이 가능성을 나타나지 않았다(p=0.112).
(바) 카바페넴군과 aminoglycosides군의 비교

이해적 요법에서 카바페넴군과 aminoglycosides군의 전체 사망률 비교에 포함된 문헌은 5편이었으며 총 포함환자 수는 233명이었다. 메타분석 결과 카바페넴군과 aminoglycosides군의 전체 사망률에는 통계적으로 유의한 차이가 없었으며(OR=0.77, 95% CI 0.22-2.70), 문헌간 통계적 이질성은 유의하지 않은 것으로 나타났다 (Chi²=5.90, df=4, P=0.21, I²=32%)(그림 21).
그림 21. 균혈증 경험적 요법에서 카바페넴군과 Aminoglycosides군의 전체 사망률 비교

(사) 경험적 요법에서 전체 사망률 근거수준 평가

경험적 요법에서 카바페넴군과 그 외 항생제군의 전체 사망률은 매우 중요한 변수 (critical outcome)로 결정되었으며, GRADE pro를 사용하여 평가한 비교군 별 근거수준 요약표는 부록 1.4에 제시하였다. 카바페넴군과 그 외 모든 비교군의 전체 사망률 메타분석의 근거수준은 코호트 연구에서 모두 'very low'로 평가되었다.

(2) 7일 사망률

(가) 카바페넴군과 비카바페넴군의 비교

경험적 요법에서 카바페넴군과 비카바페넴군의 7일 사망률을 보고한 문헌은 2편이었으며 총 환자수는 217명이었다. 두 편의 문헌을 메타분석한 결과, 카바페넴군과 비카바페넴군에서 7일 사망률에는 통계적으로 유의한 차이가 없었으며(OR=2.55, 95% CI 0.81-8.04), 문헌간 이질성도 유의한 차이가 나타나지 않았다(Chi^2=0.27, df=1, P=0.60, I^2=0%). 약제비교실험 여부로 구분한 하위군 분석에서는 약제비교실험 연구와 약제비교실험이 아닌 연구가 각각 1편씩 포함되었으며, 두 그룹 모두 카바페넴과 비카바페넴군 간 7일 사망률에 유의한 차이를 보고하지 않았다(약제비교실험연구 OR=3.75, 95% CI 0.59-23.66; 약제비교실험이 아닌 연구 OR=2.00, 95% CI 0.46-8.66)(그림 22).
그림 22. 균혈증 경험적 요법에서 카바페넴군과 비카바페넴군의 7일 사망률 비교

(나) 카바페넴군과 BL/BLIs군의 비교

총 2편 문헌, 140명의 환자가 경험적 요법에서 카바페넴군과 BL/BLIs군간 7일 사망률 비교에 포함되어 이를 메타분석한 결과, 카바페넴군과 BL/BLIs군간 7일 사망률에는 통계적으로 유의한 차이가 없었고(OR=2.79, 95% CI 0.65-11.97), 문헌간 통계적 이질성도 나타나지 않았다(Chi²=0.26, df=1, P=0.61, I²=0%). 약제비교세팅 여부로 구분한 하위군 분석에서는 약제비교세팅 연구와 약제비교세팅이 아닌 연구가 각각 1편씩 포함되었으며, 두 그룹 모두 카바페넴과 BL/BLIs군 간 7일 사망률에서 유의한 차이를 보고하지 않았다(약제비교세팅연구 OR=3.75, 95% CI 0.59-23.66; 약제비교세팅이 아닌 연구 OR=1.71, 95% CI 0.16-18.37)(그림 23).
연구결과

그림 23. 균혈증 경험적 요법에서 카바페넴군과 BL/BLIs군의 7일 사망률 비교

(3) 균혈증 관련 사망률

가) 카바페넴군과 비카바페넴군의 비교

경험적 요법에서 총사망률을 보고한 문헌은 2편이었으며, 총 포함 환자수는 215명이었다. 분석 결과, 경험적 요법에서 카바페넴군과 비카바페넴군간 균혈증 관련 사망률에는 유의한 차이가 없었고(OR=0.40, 95% CI 0.06-2.79). 문헌간 통계적 이질성은 유의하게 나타났다(Chi^2=5.32, df=1, P=0.02, I^2=81%). 약제비교세팅 여부로 구분한 하위군 분석에서는 약제비교세팅 연구와 약제비교 세팅이 아닌 연구가 각각 1편씩 포함되었다. 약제비교세팅 연구에서는 카바페넴군이 비카바페넴군과 비교하면 균혈증 관련 사망확률이 유의하게 낮은 것으로 보고되었고(OR=0.15, 95% CI 0.05-0.48). 약제비교세팅이 아닌 연구에서는 두 군간 유의한 차이가 없는 것으로 나타났다(OR=1.09, 95% CI 0.32-3.66)(그림 24).
그림 24. 균혈증 경향적 요법에서 카바페넴군과 비카바페넴군의 균혈증 관련 사망률 비교

(나) 카바페넴군과 cephalosporins군의 비교

카바페넴군과 cephalosporins군간 균혈증 관련 사망률 비교에 포함된 문헌은 2편이었으며, 총 포함 환자 수는 181명이었다. 메타분석 결과, 두 군간 균혈증 관련 사망률에는 유의한 차이가 없었으나(OR=0.35, 95% CI 0.07-1.82). 문헌간 통계적 이질성이 유의하게 나타났다(Chi²=3.77, df=1, P=0.05, I²=73%). 포함된 2편 문헌이 각각 약제비교세팅 연구와 아닌 연구로 분류가 가능하여 이를 하위군으로 구분한 결과, 약제비교세팅 연구에서는 카바페넴군과 cephalosporins군간 균혈증 관련 사망률이 유의한 차이를 보였으나(OR=0.15, 95% CI 0.05-0.48), 약제비교세팅이 아닌 연구에서는 두 군간 유의한 차이가 없었다(OR=0.82, 95% CI 0.23-2.88)(그림 25).

52
그림 25. 균혈증 메타분석 경험이적 요법에서 카바페넴군과 Cephalosporins군의 균혈증 관련 사망률 비교

카바페넴군과 cephalosporins군간 균혈증 관련 사망률 비교에 포함된 문헌들에서 cephalosporins 사용군을 4세대 cephalosporin 사용군으로만 제한하여 이를 민감도 분석하였다. 분석 결과, 카바페넴군과 4세대 cephalosporin군간 균혈증 관련 사망률에는 유의한 차이가 없었으나(OR=0.31, 95% CI 0.07-1.39), 문헌간 통계적 이질성이 유의하게 나타났다(Chi²=2.74, df=1, P=0.10, I²=63%)(그림 26).

그림 26. 균혈증 경험적 요법에서 카바페넴군과 Cephalosporins군의 균혈증 관련 사망률 비교: 4세대 Cephalosporin군으로 제한한 민감도 분석

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Carbapenems</th>
<th>Cephalosporins</th>
<th>Odds Ratio M.H. Random 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee 2011 (1)</td>
<td>10</td>
<td>84</td>
<td>17</td>
<td>51.1%</td>
</tr>
<tr>
<td>Subtotal (95%) CI</td>
<td>84</td>
<td>17</td>
<td>51.1%</td>
<td>0.15 [0.05, 0.48]</td>
</tr>
<tr>
<td>Total events</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Carbapenems</th>
<th>Cephalosporins</th>
<th>Odds Ratio M.H. Random 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee 2011 (1)</td>
<td>4</td>
<td>24</td>
<td>11</td>
<td>56.9%</td>
</tr>
<tr>
<td>Subtotal (95%) CI</td>
<td>24</td>
<td>11</td>
<td>56.9%</td>
<td>0.82 [0.33, 2.08]</td>
</tr>
<tr>
<td>Total events</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heterogeneity not applicable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Carbapenems</th>
<th>4th Cephalosporins</th>
<th>Odds Ratio M.H. Random 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lee 2011</td>
<td>4</td>
<td>24</td>
<td>6</td>
<td>46.5%</td>
</tr>
<tr>
<td>Lee 2013</td>
<td>10</td>
<td>84</td>
<td>8</td>
<td>53.5%</td>
</tr>
<tr>
<td>Total (95%) CI</td>
<td>108</td>
<td>14</td>
<td>100.0%</td>
<td>0.39 [0.07, 1.39]</td>
</tr>
<tr>
<td>Heterogeneity: T2=5.75, Chi²=2.74, df=1 (P=0.10), I²=63%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect 2=1.33 (P=0.12)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Risk of bias legend: (A) 대조군 비교기준설정 (B) 대조군 선택 (C) 노동비교 (D) 노동비교 (E) 노동비교 (F) 노동비교 (G) 노동비교 (H) 노동비교 (I) 노동비교 (J) 노동비교 (K) 노동비교 (L) 노동비교 (M) 노동비교
(다) 경험적 요법에서 균혈증 관련 사망률 균거수준 평가
경험적 요법에서 카바페넴군과 그 외 항생제군의 균혈증 관련 사망률은 중요한 변수(important outcome)로 결정되었다. 카바페넴군과 그 외 모든 비교군의 균혈증 관련 사망률 메타분석의 균거수준은 코호트 연구에서 모두 ‘very low’로 평가되었다. GRADE pro를 사용하여 평가한 비교군 별 균거수준 요약표는 부록에 제시하였다.

경험적 요법에서 카바페넴 항생제와 그 외 기타 항생제의 전체 사망률 지표의 메타분석 결과요약은 아래 표 13과 같다.

<table>
<thead>
<tr>
<th>결과</th>
<th>비교군</th>
<th>분석 구분</th>
<th>문헌 수</th>
<th>환자 수</th>
<th>변량효과 모형</th>
<th>통합 오즈비 (95% CI)</th>
<th>(I^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체</td>
<td></td>
<td>기본분석</td>
<td>19</td>
<td>2,134</td>
<td>0.84 (0.54-1.32)</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>분석</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계</td>
<td>3</td>
<td>428</td>
<td>0.46 (0.15-1.44)</td>
<td>76</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계 아님</td>
<td>16</td>
<td>1,706</td>
<td>1.03 (0.66-1.63)</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>적절한 치료수행</td>
<td>9</td>
<td>807</td>
<td>0.68 (0.26-1.81)</td>
<td>75</td>
<td></td>
</tr>
<tr>
<td></td>
<td>비카바페넴</td>
<td>민감도</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>분석</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계</td>
<td>2</td>
<td>314</td>
<td>0.28 (0.10-0.80)</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>비약제</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>연구</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계 아님</td>
<td>7</td>
<td>493</td>
<td>1.07 (0.34-3.30)</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>연구</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BL/BLIs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>기본분석</td>
<td>15</td>
<td>1,044</td>
<td>0.10 (0.67-1.52)</td>
<td>19</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>분석</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계</td>
<td>2</td>
<td>327</td>
<td>0.75 (0.27-2.10)</td>
<td>62</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계 아님</td>
<td>13</td>
<td>717</td>
<td>1.18 (0.76-1.83)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Non-BL/BLIs</td>
<td>기본분석</td>
<td>15</td>
<td>1,228</td>
<td>0.73 (0.40-1.34)</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>분석</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계</td>
<td>1</td>
<td>101</td>
<td>0.15 (0.05-0.46)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계 아님</td>
<td>14</td>
<td>1,127</td>
<td>0.89 (0.50-1.57)</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cephalosporins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>기본분석</td>
<td>12</td>
<td>819</td>
<td>0.52 (0.24-1.10)</td>
<td>72</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>분석</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계</td>
<td>1</td>
<td>101</td>
<td>0.15 (0.05-0.46)</td>
<td>NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교실계 아님</td>
<td>11</td>
<td>718</td>
<td>0.63 (0.30-1.33)</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4세대 cephalosporins</td>
<td>4</td>
<td>310</td>
<td>0.72 (0.22-2.32)</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3세대 cephalosporins</td>
<td>3</td>
<td>199</td>
<td>0.26 (0.00-24.43)</td>
<td>94</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>혼합</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>민감도</td>
<td>5</td>
<td>258</td>
<td>0.40 (0.11-1.47)</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3세대 cephalosporins</td>
<td>5</td>
<td>302</td>
<td>0.59 (0.13-2.76)</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>
(4) 기타 결과변수

사망률 관련 지표 이외에 문헌에서 보고한 기타 결과변수들은 동일한 결과지표라 하더라도 문헌마다 보고한 형태가 상이하거나, 지표에 대한 정의가 각각 달라서 메타분석을 수행하는 것이 불가능하였다. 문헌별 기타 결과변수들에 대한 세부 정보는 아래 표 14에 서 확인할 수 있다.

표 14. 균혈증 경험적 요법에서 문헌별 기타 결과변수 요약

<table>
<thead>
<tr>
<th>문헌</th>
<th>문헌별 결과지표 명</th>
<th>카바페넴군 (%)</th>
<th>비카바페넴군 (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kang, 2012</td>
<td>3일 시점에서 치료실패</td>
<td>8/43 (18.6)</td>
<td>2/15 (13.3)</td>
<td>NR</td>
</tr>
<tr>
<td></td>
<td>7일 시점에서 치료실패</td>
<td>12/34 (35.3)</td>
<td>7/20 (35.0)</td>
<td>NR</td>
</tr>
<tr>
<td>Qureshi, 2011</td>
<td>96시간 시점에서 임상적 치료실패</td>
<td>2/8 (25.0)</td>
<td>14/18 (77.8)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

BL/BLIs: β-lactam/β-lactamase inhibitors, CI: confidence interval, NA: not applicable
2) 확정적 요법

카바페넴과 기타 항생제의 치료 성과를 보고한 31편의 문헌 중 확정적 요법에서의 치료 성과를 보고한 문헌은 21편이었으며, 이를 비교 약제에 따라 비카바페넴군, BL/BLIs군, non-BL/BLIs군, cephalosporins군, quinolones군, aminoglycosides군으로 분류하여 관련 결과지표를 비교분석하였다. 확정적 요법의 정의는 문헌에서 보고한 정의를 그대로 따랐고, 문헌에서 확정적 요법의 정의를 보고하지 않았으나 동 연구의 선행연구인 Vardakas 외(2012)의 체계적 문헌고찰에 포함된 문헌인 경우에는 이 문헌에서의 정의를 사용하였다.

(1) 전체 사망률

가) 카바페넴군과 비카바페넴군의 비교

확정적 요법에서 카바페넴군과 비카바페넴군의 전체 사망률 비교에 포함된 문헌은 21편이었으며, 총 포함 환자수는 1,486명이었다. 비카바페넴군의 분류는 경험적 요법에서와 동일하게 카바페넴계 항생제 외, 문헌에서 사용한 기타 모든 항생제를 비카바페넴군으로 정의하였으며, 문헌에서 항생제 치료를 받지 않은 환자를 보고한 경우에는 동 분석의 대상군에 해당하지 않는 것으로 판단하여 분석에서 제외하였다. 메타분석 실시 결과, 확정적 요법에서 카바페넴군과 비카바페넴군간 전체 사망률에는 유의한 차이가 나타나지 않았으며(OR=0.70, 95% CI 0.48-1.04), 문헌간 통계적 이질성은 유의하지 않았다(Chi^2=29.69, df=19, P=0.06, I^2=36%). 문헌내 약제간 비교설계 여부에 따라 실험적 하위군 분석에서, 약제비교세팅연구와 약제비교세팅이 아닌 연구 모두에서 카바페넴군과 비카바페넴군간 전체 사망률에 유의한 차이가 나타나지 않았다(약제비교세팅 연구 OR=0.38, 95% CI 0.12-1.19; 약제비교세팅이 아닌 연구 OR=0.81, 95% CI
연구결과

문헌간 통계적 이질성은 약제비교세팅 연구에서는 유의하였으나, 약제비교세팅이 아닌 연구에서는 유의하지 않았다(약제비교세팅연구 Chi²=14.38, df=4, P=0.006, I²=72%; 약제비교세팅이 아닌 연구 Chi²=13.69, df=14, P=0.47, I²=0%) (그림 27).

![표 27: 카바페넴군과 비카바페넴군의 전체 사망률 비교](image)

그림 27. 균혈증 확정적 요법에서 카바페넴군과 비카바페넴군의 전체 사망률 비교

기본분석에서 카바페넴계 항생제 외 문헌에서 사용한 기타 모든 항생제로 정의하였던 비카바페넴군의 정의를 카바페넴계 및 cephalosporin계 항생제 외 기타 모든 항생제로 cephalosporin포함범위를 축소하여 재정의 한 후 민감도 분석을 실시하였다. 분석 결과, cephalosporin계 항생제가 포함되지 않은 비카바페넴군은 카바페넴군과 비교하여 전체 사망률에서 통계적으로 유의한 차이를 나타내지 않았으며(OR=0.89, 95% CI 0.50-1.61), 문헌간 통계적 이질성도 유의하지 않았다(Chi²=22.39, df=13, P=0.05, I²=42%) (그림 28).
ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법 간 임상효과 비교 연구

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>Carbapenems Events</th>
<th>Non-carbapenems Events</th>
<th>Total Weight</th>
<th>Odds Ratio M H Random 95% CI</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot 2002</td>
<td>1</td>
<td>13</td>
<td>0</td>
<td>2.76 [1.10, 7.47]</td>
<td>2002</td>
</tr>
<tr>
<td>Kang 2004</td>
<td>8</td>
<td>62</td>
<td>3</td>
<td>1.39 [0.31, 6.74]</td>
<td>2004</td>
</tr>
<tr>
<td>Paterson 2004</td>
<td>1</td>
<td>27</td>
<td>0</td>
<td>2.09 [0.39, 1.10]</td>
<td>2004</td>
</tr>
<tr>
<td>Endimiani 2005</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0.20 [0.01, 0.66]</td>
<td>2005</td>
</tr>
<tr>
<td>Huang 2006</td>
<td>6</td>
<td>22</td>
<td>13</td>
<td>1.09 [0.05, 0.67]</td>
<td>2006</td>
</tr>
<tr>
<td>Bin 2006</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0.30 [0.01, 0.65]</td>
<td>2006</td>
</tr>
<tr>
<td>Chadey 2010</td>
<td>4</td>
<td>30</td>
<td>9</td>
<td>0.30 [0.01, 0.65]</td>
<td>2010</td>
</tr>
<tr>
<td>Tuor 2015</td>
<td>10</td>
<td>15</td>
<td>5</td>
<td>2.03 [0.39, 1.10]</td>
<td>2010</td>
</tr>
<tr>
<td>Kang 2011</td>
<td>20</td>
<td>95</td>
<td>1</td>
<td>2.19 [0.32, 1.10]</td>
<td>2011</td>
</tr>
<tr>
<td>Rodriguez-Bano 2011</td>
<td>20</td>
<td>120</td>
<td>5</td>
<td>1.96 [0.39, 0.66]</td>
<td>2011</td>
</tr>
<tr>
<td>Fernández 2011</td>
<td>16</td>
<td>30</td>
<td>1</td>
<td>0.51 [0.01, 0.65]</td>
<td>2011</td>
</tr>
<tr>
<td>Tuor 2012</td>
<td>16</td>
<td>40</td>
<td>0</td>
<td>0.11 [0.00, 0.32]</td>
<td>2012</td>
</tr>
<tr>
<td>Ts 2013</td>
<td>10</td>
<td>91</td>
<td>3</td>
<td>0.74 [0.16, 0.29]</td>
<td>2013</td>
</tr>
<tr>
<td>Kang 2013</td>
<td>6</td>
<td>61</td>
<td>0</td>
<td>2.93 [0.15, 5.45]</td>
<td>2013</td>
</tr>
<tr>
<td>Tae 2014</td>
<td>3</td>
<td>21</td>
<td>2</td>
<td>0.36 [0.01, 0.66]</td>
<td>2014</td>
</tr>
</tbody>
</table>

| Risk of Bias | A | B | C | D | E | F | G | H |

그림 28. 균혈증 확정적 요법에서 카바패넴군과 비카바패넴군의 전체 사망률 비교.

Cephalosporin군을 제외한 민감도 분석

확정적 요법에서 카바패넴군과 BL/BLIs군의 전체 사망률 메타분석에 대한 contour-enhanced funnel plot은 아래 그림 29와 같으며, 시각적으로 고른 분포를 나타내는 것으로 판단하였다. 추가적으로 수행한 Egger 검정에서는 유의확률이 0.423으로 추정되어 소규모 연구 영향의 가능성은 존재하지 않는 것으로 판단하였다.
연구결과 Ⅲ

그림 29. 균혈증 확정적 요법에서 카바페넴군과 비카바페넴군 전체 사망률 비교의
contour-enhanced funnel plot

(나) 카바페넴군과 BL/BLIs군의 비교

확정적 요법에서 카바페넴군과 BL/BLIs군의 전체 사망률 비교에 포함된 문헌은 14편이었으며, 총 포함환자 수는 804명이었다. 메타분석 결과, 카바페넴군과 BL/BLIs군에서의 전체 사망률은 통계적으로 유의한 차이가 나타나지 않았고(OR=0.60, 95% CI 0.28-1.29), 문헌간 통계적 이질성도 유의하지 않았다(Chi²=18.87, df=12, P=0.09, I²=36%). 약제비교세팅으로 구분한 하위군 분석에서 12편의 문헌이 약제비교세팅이 아닌 문헌 그룹으로 분류되었으며, 나머지 2편의 문헌이 약제비교세팅 문헌으로 분류되었다. 약제비교세팅이 아닌 문헌 그룹에서 카바페넴과 BL/BLIs군의 전체 사망률에는 통계적으로 유의한 차이가 없었으며(OR=0.49, 95% CI 0.22-1.06), 문헌간 통계적 이질성도 유의하지 않은 것으로 분석되었다(Chi²=14.35, df=11, P=0.21, I²=23%). 약제비교세팅 그룹에 해당하는 문헌은 2편(Bin 등 2006, Rodriguez-Bano 등 2011)이었으나 Bin 등 (2006)의 논문에서는 카바페넴군과 BL/BLIs군 모두에서 사망률 1건도 보고하지 않아 메타분석에서는 제외되었다. 남은 1편의 문헌(Rodriguez-Bano 등 2011)은 카바페넴군과
ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법 간 임상효과 비교 연구

BL/BLIs군간 전체 사망률에 통계적으로 유의한 차이가 없는 것으로 보고하였다 (OR=1.96, 95% CI 0.69-5.53)(그림 30).

![Table](image1.png)

그림 30. 균혈증 확정적 요법에서 카바페넴군과 BL/BLIs군의 전체 사망률 비교

동 결과 변수 분석에 포함된 14편 문헌에 대한 contour-enhanced funnel plot은 아래 그림 31과 같다. 아래 그림에서 plot의 오른쪽 부분에 연구들이 결측되었으나, 통계적 유의성이 낮은 영역과 높은 영역 모두에서 연구들이 결측되었으므로 plot의 비대칭성은 출판 비뚤림에 의한 것이라고 단정하기는 어렵다. Egger 검정의 유의확률은 0.105로 추정되어 소규모 연구 영향의 가능성은 없을 것으로 판단하였다.
연구결과

그림 31. 균혈증 확정적 요법에서 카바페넴군과 BL/BLIs군 전체 사망률 비교의 contour-enhanced funnel plot

(다) 카바페넴군과 non-BL/BLIs군의 비교

확정적 요법에서 카바페넴군과 non-BL/BLIs군의 전체 사망률 비교에 포함된 문헌은 모두 20편이었으며 총 포함 환자수는 1,280명이었다. Non-BL/BLIs군의 분류는 카바페넴계 및 BL/BLIs계 항생제 외, 문헌에서 사용한 기타 모든 항생제를 포함하는 것으로 정의하였으며, 문헌에서 non-BL/BLIs군을 따로 정의하여 보고한 경우에는 그 값을 그대로 사용하였다. 문헌 결과, 통합 오즈비는 0.65 (95% CI 0.43-0.99)로 카바페넴군이 non-BL/BLIs군보다 사망률 오즈비가 유의하게 낮았으며, 문헌간 통계적 이질성은 유의하지 않았다(Chi²=26.67, df=18, P=0.09, I²=33%). 약제간 비교세팅 여부에 따른 하위군 분석에서, 약제비교세팅이 아닌 17편의 연구들에서는 카바페넴군과 non-BL/BLIs군간 전체 사망률에 통계적으로 유의한 차이가 없었고(OR=0.78, 95% CI 0.50-1.21), 문헌간 통계적 이질성도 유의하지 않았다(Chi²=19.20, df=15, P=0.21, I²=22%). 약제비교세팅 연구에 포함된 3편의 문헌에서는 전체 분석과 마찬가지로, 카바페넴군이 non-BL/BLIs군보다 사망확률에서 유의하게 낮았으며(OR=0.33, 95% CI 0.12-0.89).
문헌간 통계적 이질성은 유의하지 않았다(Chi²=3.58, df=2, P=0.17, I²=44%)(그림 32).

<table>
<thead>
<tr>
<th>Carbanpem</th>
<th>Non BL/BLIs</th>
<th>Odds Ratio</th>
<th>Odds Ratio</th>
<th>Risk of Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study or Subgroup</td>
<td>Total</td>
<td>Events</td>
<td>Total</td>
<td>Weight</td>
</tr>
<tr>
<td>Heang 2006</td>
<td>9</td>
<td>22</td>
<td>11</td>
<td>32</td>
</tr>
<tr>
<td>Lee 2013</td>
<td>2</td>
<td>17</td>
<td>10</td>
<td>17</td>
</tr>
<tr>
<td>Yang 2014</td>
<td>16</td>
<td>34</td>
<td>22</td>
<td>99</td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td>51</td>
<td>127</td>
<td>107</td>
<td>295</td>
</tr>
<tr>
<td>Total events</td>
<td>47</td>
<td>117</td>
<td>54</td>
<td>235</td>
</tr>
</tbody>
</table>

12.1.2) 아래의 보고에서 나타난 연구

문헌간 통계적 이질성은 유의하지 않았다(Chi²=3.58, df=2, P=0.17, I²=44%)(32).

문헌간 통계적 이질성은 유의하지 않았다(Chi²=3.58, df=2, P=0.17, I²=44%)(32).

그림 32. 균혈증 확정적 요법에서 카바페넴군과 non-BL/BLIs군의 전체 사망률 비교

기본분석에서 카바페넴계 및 BL/BLIs계 항생제 외 문헌에서 사용한 기타 모든 항생제로 정의하였던 non-BL/BLIs군의 정의를 카바페넴계, BL/BLIs계 및 cephalosporin계 항생제 외 기타 모든 항생제로 포함범위를 축소하여 재정의한 후 민감도 분석을 실시하였다. 분석 결과, cephalosporin계 항생제가 포함되지 않은 non-BL/BLIs군은 카바페넴군과 비교하여 전체 사망률에서 통계적으로 유의한 차이를 나타내지 않았으며(OR=0.83, 95% CI 0.47-1.50), 문헌간 통계적 이질성도 유의하지 않았다(Chi²=17.88, df=12, P=0.12, I²=33%)(그림 33).
연구결과 Ⅲ

그림 33. 균혈증 확정적 요법에서 카바페넴군과 non-BL/BLIs군의 전체 사망률 비교: Cephalosporin군을 제외한 민감도 분석

동 메타분석에 포함된 20편 문헌에 대한 contour-enhanced funnel plot은 아래 그림 34와 같으며, 시각적으로 고른 분포를 나타내는 것으로 판단하였다. Egger 검정에서 는 유의확률의 통계적 유의성이 없는 것으로 나타나 소규모 연구 영향의 가능성은 없을 것으로 판단하였다(p=0.779).
그림 34. 균혈증 확정적 요법에서 카바페넴군과 non-BL/BLIs군 전체 사망률 비교의 contour-enhanced funnel plot

(라) 카바페넴군과 cephalosporins군의 비교

총 15편의 문헌, 823명의 환자가 확정적 요법에서 카바페 numel군과 cephalosporin군간 전체 사망률 비교분석에 포함되었다. 메타분석 결과, 카바페넴군은 cephalosporin군과 비교하여 사망률 오즈비가 낮게 나타났으며(OR=0.38, 95% CI 0.22-0.65), 문헌간 통계적 이질성은 유의하지 않았다(Chi²=19.06, df=13, P=0.12, I²=32%). 약제비교세팅으로 구분한 하위군 분석에서 약제비교세팅 그룹에 포함된 연구들과 아닌 연구 그룹 모두에서 카바페넴군과 cephalosporin군간 전체 사망률에서 유의한 차이가 있는 것으로 분석되었으며(약제비교세팅연구 OR=0.21, 95% CI 0.07-0.67; 약제비교세팅이 아닌 연구 OR=0.44, 95% CI 0.23, 0.81). 두 그룹 모두에서 문헌간 통계적 이질성은 유의하지 않게 나타났다(약제비교세팅연구 Chi²=1.41, df=1, P=0.24, I²=29%; 약제비교세팅이 아닌 연구 Chi²=16.17, df=11, P=0.14, I²=32%)(그림 35).
연구결과

그림 35. 균혈증 확정적 요법에서 카바페넴군과 Cephalosporins군의 전체 사망률 비교

Cephalosporins의 세대 구분에 따른 추가 하위군 분석을 위해 문헌에서 사용된 cephalosporins 항생제를 세대 세대로 구분하여 분류하였다. 카바페넴과 4세대 cephalosporin군의 전체 사망률 비교에서 두 군간 유의한 차이는 나타나지 않았으며 (OR=0.35, 95% CI 0.11-1.19), 문헌간 통계적 이질성은 유의하게 나타났다 (Chi^2=10.12, df=4, P=0.04, I^2=60%). 3세대 cephalosporin군과의 비교에서는 카바페넴군이 동 비교군과 비교하여 사망률 오즈비가 더 낮은 것으로 나타났고 (OR=0.37, 95% CI 0.17-0.84), 문헌간 통계적 이질성은 유의하지 않은 것으로 보고되었다 (Chi^2=0.93, df=3, P=0.82, I^2=0%). 세대가 혼합된 cephalosporins를 포함한 연구들로서 역시 카바페넴군이 혼합된 cephalosporins군과 비교하여 사망확률이 66% 낮았으며 (OR=0.34, 95% CI 0.12-0.94), 문헌간 통계적 이질성은 유의하지 않았다 (Chi^2=5.89, df=4, P=0.21, I^2=32%).(그림 36).
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

그림 36. 균혈증 확정적 요법에서 카바페넴군과 Cephalosporins군의 전체 사망률 비교:

Cephalosporins 항생제 세대 구분에 따른 하위군 분석

동 결과변수 분석에 포함된 15편 문헌에 대한 contour-enhanced funnel plot을 아래에 제시하였다(그림 37). 아래 그림에서 plot의 오른쪽, 주로 연구들이 결측되었으나, 통계적 유의성은 낮은 영역과 높은 영역 모두에서 연구들이 결측되었으므로 plot의 비대칭성이 출판 비뚤림에 의한 것이라고 단정 할 수는 없었다. Egger 검정의 유의확률은 0.957로 추정되어 소규모 연구 영향의 가능성은 존재하지 않을 것으로 판단하였다.
그림 37. 균혈증 확정적 요법에서 카바페넴군과 Cephalosporins군 전체 사망률 비교의 contour-enhanced funnel plot

(마) 카바페넴군과 quinolones군의 비교
총 9편의 문헌, 463명의 환자가 경험적 요법에서 카바페넴군과 quinolones군의 전체 사망률 비교분석에 포함되었다. 메타분석 결과, 두 군간 전체 사망률에는 통계적으로 유의한 차이가 없었으며(OR=0.71, 95% CI 0.37-1.36), 문헌간 통계적 이질성도 유의하지 않은 것으로 나타났다(Chi^2=6.80, df=8, P=0.56, I^2=0%)(그림 38).
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교 연구

그림 38. 균혈증 확정적 요법에서 카바페넴군과 Quinolone군의 전체 사망률 비교

(바) 카바페넴군과 aminoglycosides군의 비교

경험적 요법에서 카바페넴군과 aminoglycosides군의 전체 사망률 비교에 포함된 문헌은 5편이었으며 총 포함환자 수는 183명이었다. 메타분석 결과, 카바페넴군과 aminoglycosides군의 전체 사망률에는 통계적으로 유의한 차이가 없었으며 (OR=0.54, 95% CI 0.18-1.63), 문헌간 통계적 이질성도 유의하지 않은 것으로 나타났다 (Chi²=2.38, df=4, P=0.67, I²=0%) (그림 39).

그림 39. 균혈증 확정적 요법에서 카바페넴군과 Aminoglycosides군의 전체 사망률 비교
(사) 확정적 요법에서 전체 사망률 근거수준 평가

확정적 요법에서 카바페넴군과 그 외 항생제군의 전체 사망률은 매우 중요한 변수 (critical outcome)로 결정되었다. 카바페넴군과 그 외 모든 비교군의 전체 사망률 메타 분석의 근거수준은 코호트 연구에서 모두 'very low'로 평가되었다. GRADE pro를 사용하여 평가한 비교군 별 근거수준요약표는 (부록1.4)에 제시하였다.

(2) 14일 사망률

(가) 카바페넴군과 비카바페넴군의 비교

총 4편의 문헌이 확정적 요법에서 카바페넴과 비카바페넴군의 14일 사망률을 보고하여 이를 메타분석 하였다. 분석 결과, 카바페넴군과 비교하여 카바페넴군에서의 14일 사망률 오즈비가 더 낮은 것으로 나타났으며(OR=0.36, 95% CI 0.19-0.68), 문헌간 통계적 이질성은 유의하지 않았다(Chi²=0.94, df=3, P=0.82, I²=0%). 약제비교세팅으로 구분한 하위군 분석에서, 2편의 약제비교세팅 연구의 경우 통합 분석과 마찬가지로 카바페넴군이 비카바페넴군보다 14일 사망률 오즈비가 유의하게 낮았고(OR=0.30, 95% CI 0.12-0.73), 문헌간 통계적 이질성은 유의하지 않았다(Chi²=0.06, df=1, P=0.81, I²=0%). 약제비교세팅이 아닌 2편의 연구에서는 두 군간 14일 사망확률은 통계적으로 유의한 차이가 없는 것으로 나타났고(OR=0.43, 95% CI 0.17-1.12), 문헌간 이질성도 유의하지 않았다(Chi²=0.59, df=1, P=0.44, I²=0%)(그림 40).

![그림 40: 균혈증 확정적 요법에서 카바페넴군과 비카바페넴군의 14일 사망률 비교](image-url)
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

(나) 카바페넴군과 non-BL/BLIs군의 비교

총 4편의 문헌이 확정적 요법에서 카바페넴과 non-BL/BLIs군의 14일 사망률을 보고하여 이를 메타분석 하였다. 본석 결과, non-BL/BLIs군과 비교하여 카바페넴군에서는 14일 사망률 오즈비가 낮은 것으로 나타났으며(OR=0.39, 95% CI 0.20-0.75). 문헌간 통계적 이질성은 유의하지 않았다(Chi²=1.03, df=1, P=0.80, I²=0%). 약제비교세팅으로 구분한 하위군 분석에서, 약제비교세팅 연구에 포함된 2편의 문헌에서는 카바페넴군과 non-BL/BLIs군간 사망률에 유의한 차이가 있었으며 (OR=0.30, 95% CI 0.12-0.73). 문헌간 통계적 이질성은 유의하지 않았다(Chi²=0.06, df=1, P=0.81, I²=0%). 약제비교세팅이 아닌 2편 연구의 경우에는 카바페넴군과 non-BL/BLIs군간 14일 사망률에 유의한 차이가 없었고(OR=0.52, 95% CI 0.20-1.39). 문헌간 통계적 이질성도 유의하지 않았다(Chi²=0.30, df=1, P=0.58, I²=0%).(그림 41).

그림 41. 균혈증 확정적 요법에서 카바페넴군과 non-BL/BLIs군의 14일 사망률 비교

(다) 카바페넴군과 cephalosporins군의 비교

총 4편의 문헌이 확정적 요법에서 카바페넴과 cephalosporins군의 14일 사망률을 보고하여 이를 메타분석 하였다. 본석 결과, 카바페넴군과 cephalosporins군간 14일 사망률에 유의한 차이가 있었으며(OR=0.37, 95% CI 0.18-0.76). 문헌간 통계적 이질성은 유의하지 않았다(Chi²=1.97, df=3, P=0.58, I²=0%). 약제비교세팅으로 구분한 하위군
분석에서, 약제비교연구가 아닌 3편 연구의 경우 카바페넴군과 cephalosporins군의 전체 사망률에는 유의한 차이가 없었으며(OR=0.42, 95% CI 0.16-1.10), 문헌간 통계적 이질성도 유의하지 않았다(Chi\(^2\)=1.84, df=2, P=0.40, I\(^2\)=0%). 약제비교연구 연구에 포함된 1편(Yang, 2014)의 문헌에서는 카바페넴군이 cephalosporins군간 사망률 오즈비가 0.32로(OR=0.32, 95% CI 0.11-0.93) 보고되었다(그림 42).

그림 42. 균혈증 확정적 요법에서 카바페넴군과 Cephalosporins군의 14일 사망률 비교

(1) 확정적 요법에서 14일 사망률 근거수준 평가
확정적 요법에서 카바페넴군과 그 외 항생제군의 14일 사망률은 중요한 변수(important outcome)로 결정되었다. 카바페넴군과 그 외 모든 비교군의 14일 사망률 메타분석의 근거수준은 코호트 연구에서 모두 ‘very low’로 평가되었다. GRADE pro를 사용하여 평가한 비교군 별 근거수준요약표는 부록 1.4에 제시하였다.

(3) 7일 사망률
(가) 카바페넴군과 비카바페넴군의 비교
확정적 요법에서 카바페넴군과 비카바페넴군의 7일 사망률을 보고한 문헌은 2편이었으며 총 환자수는 217명이었다. 두 편의 문헌을 메타분석한 결과, 카바페넴군과 비카바페넴군에서 7일 사망률에는 통계적으로 유의한 차이가 없었으며(OR=0.99, 95% CI 0.29-3.38), 문헌간 이질성도 유의한 차이가 나타나지 않았다(Chi\(^2\)=0.85, df=1, I\(^2\)=0%).
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

P=0.36, I²=0%). 약제비교세팅 여부로 구분한 하위군 분석에서는 약제비교세팅 연구와 약제비교세팅이 아닌 연구가 각각 1편씩 포함되었으며, 두 그룹 모두 카바페넴과 비카바페넴군 간 7일 사망률에 유의한 차이를 보고하지 않았다(약제비교세팅연구 OR=2.30, 95% CI 0.26-20.21; 약제비교세팅이 아닌 연구 OR=0.67, 95% CI 0.15-2.96)(그림 43).

그림 43. 균혈증 확정적 요법에서 카바페넴군과 비카바페넴군의 7일 사망률 비교

(나) 카바페넴군과 BL/BLIs군의 비교

총 2편 문헌, 230명의 환자가 확정적 요법에서 카바페넴군과 BL/BLIs군간 7일 사망률 비교에 포함되어 이를 메타분석한 결과, 카바페넴군과 BL/BLIs군간 7일 사망률에는 통계적으로 유의한 차이가 없었고(OR=0.58, 95% CI 0.03-11.58), 문헌간 통계적 이질성은 유의한 것으로 나타났다(Chi²=3.04, df=1, P=0.08, I²=67%). 약제비교세팅 여부로 구분한 하위군 분석에서는 약제비교세팅 연구와 약제비교세팅이 아닌 연구가 각각 1편씩 포함되었으며, 두 그룹 모두 7일 사망률과 관련하여 카바페넴과 BL/BLIs군 간 유의한 차이를 보고하지 않았다(약제비교세팅연구 OR=2.30, 95% CI 0.26-20.21; 약제비교세팅이 아닌 연구 OR=0.12, 95% CI 0.01-1.73)(그림 44).
그림 44. 균혈증 확정적 요법에서 카바페넴군과 BL/BLIs군의 7일 사망률 비교

(4) 균혈증 관련 사망률

(가) 카바페넴군과 비카바페넴군의 비교

확정적 요법에서 카바페넴군과 비카바페넴군의 균혈증 관련 사망률을 보고한 문헌은 3편이었으며, 총 포함 환자수는 188명이었다. 분석 결과, 확정적 요법에서 카바페넴군과 비카바페넴군간 균혈증 관련 사망률에 유의한 차이가 있었으며(OR=0.26, 95% CI 0.10-0.66), 문헌간 통계적 이질성은 유의하지 않았다(Chi²=2.42, df=2, P=0.30, I²=17%). 약제비교세팅 여부로 구분한 하위군 분석에서는 약제비교세팅 연구와 약제비교세팅이 아닌 연구가 각각 1편과 2편의 문헌이 포함되었다. 2편의 문헌이 포함된 약제비교세팅이 아닌 연구군에서 카바페넴군은 비카바페넴군과 비교하여 균혈증 관련 사망확률이 유의하게 낮았으며(OR=0.34, 95% CI 0.14-0.83), 문헌간 통계적 이질성은 유의하지 않았다(Chi²=0.22, df=1, P=0.64, I²=0%). 1편의 문헌이 포함된 약제비교세팅 연구 역시 균혈증 관련 사망률과 관련하여 두 군간 유의한 차이를 보고하였다(OR=0.06, 95% CI 0.01-0.52)(그림 45).
그림 45. 균혈증 확정적 요법에서 카바페넴군과 비카바페넴군의 균혈증 관련 사망률 비교

(나) 카바페넴군과 BL/BLIs군의 비교

총 2편 문헌, 90명의 환자가 확정적 요법에서 카바페넴군과 BL/BLIs군간 균혈증 관련 사망률 비교에 포함되어 이를 메타분석하였다. 분석 결과, 카바페넴군과 BL/BLIs군간 균혈증 관련 사망률에는 통계적으로 유의한 차이가 없었으나(OR=0.15, 95% CI 0.00-7.62), 문헌간 통계적 이질성이 유의하게 나타났다(Chi²=3.04, df=1, P=0.08, I²=67%). (그림 46).

그림 46. 균혈증 확정적 요법에서 카바페넴군과 BL/BLIs군의 균혈증 관련 사망률 비교
(다) 카바페넴군과 cephalosporins군의 비교

확장적 요법에서 카바페넴군과 cephalosporins군간 균혈증 관련 사망률 비교에 포함된 문헌은 2편이었으며, 총 포함 환자 수는 125명이었다. 메타분석 결과, 두 군간 균혈증 관련 사망률은 유의한 차이를 보이는 것으로 분석되었으며(OR=0.18, 95% CI 0.03-0.97), 문헌간 통계적 이질성은 유의하지 않았다(Chi²=1.98, df=1, P=0.16, I²=50%). 포함된 2편 문헌을 각각 약제비교세팅 연구와 아닌 연구로 분류가 가능하여 이를 하위군으로 구분한 결과, 약제비교세팅 연구와 그렇지 않은 연구 모두에서 카바페넴군과 cephalosporins군간 균혈증 관련 사망률에 유의한 차이가 있는 것으로 보고되었으며(약제비교세팅연구 OR=0.06, 95% CI 0.01-0.52; OR=0.34, 95% CI 0.10-1.10)(그림 47).

그림 47. 균혈증 확장적 요법에서 카바페넴군과 cephalosporins군의 균혈증 관련 사망률 비교

확장적 요법의 카바페넴군과 cephalosporins군간 균혈증 관련 사망률 비교에 포함된 문헌들에서 cephalosporins 사용군을 4세대 cephalosporin 사용군으로만 제한이 가능하여 이를 믿감도 분석하였다. 분석 결과, 카바페넴군과 4세대 cephalosporin군간 균혈증 관련 사망률에 유의한 차이가 나타났으며(OR=0.17, 95% CI 0.03-0.83), 문헌간 통계적 이질성은 유의하지 않았다(Chi²=1.74, df=1, P=0.19, I²=43%)(그림 48).
ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

그림 48. 균혈증 확정적 요법에서 카바페넴군과 Cephalosporins군의 균혈증 관련 사망률 비교: 4세대 Cephalosporin군으로 제한한 민감도 분석

결과

표 15. 균혈증 확정적 요법에서 사망률 지표 분석결과 요약

<table>
<thead>
<tr>
<th>결과</th>
<th>비교군</th>
<th>분석 구분</th>
<th>문헌 수</th>
<th>환자 수</th>
<th>변량효과모형, 통합 오즈비 (95% CI)</th>
<th>\hat{i}^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>전체 사망률</td>
<td>비카바페넴</td>
<td>기본분석</td>
<td>21</td>
<td>1,486</td>
<td>0.70 (0.48-1.04)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>6</td>
<td>397</td>
<td>0.38 (0.12-1.19)</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>15</td>
<td>1,089</td>
<td>0.81 (0.57-1.15)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>민감도 분석 (Cephalosporins 제외)</td>
<td>기본분석</td>
<td>15</td>
<td>917</td>
<td>0.89 (0.50-1.61)</td>
<td>42</td>
</tr>
<tr>
<td></td>
<td>BL/BLIs</td>
<td>기본분석</td>
<td>14</td>
<td>804</td>
<td>0.60 (0.28-1.29)</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>2</td>
<td>189</td>
<td>1.96 (0.69-5.53)</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>12</td>
<td>615</td>
<td>0.49 (0.28-1.29)</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>Non-BL/BLIs</td>
<td>기본분석</td>
<td>20</td>
<td>1,280</td>
<td>0.65 (0.43-0.99)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>하위군</td>
<td>약제비교설계</td>
<td>3</td>
<td>152</td>
<td>0.33 (0.12-0.99)</td>
<td>44</td>
</tr>
<tr>
<td>결과</td>
<td>비교군</td>
<td>분석 구분</td>
<td>문헌 수</td>
<td>환자 수</td>
<td>변량효과모형. 통합 오즈비 (95% CI)</td>
<td>$\hat{\theta}$</td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>----------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>분석</td>
<td>약제비교설계</td>
<td>17</td>
<td>1,128</td>
<td>0.78 (0.50-1.21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>인접도 분석</td>
<td>13</td>
<td>864</td>
<td>0.83 (0.47-1.50)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>기본분석</td>
<td>15</td>
<td>823</td>
<td>0.38 (0.22-0.65)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>3</td>
<td>113</td>
<td>0.21 (0.07-0.67)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>12</td>
<td>710</td>
<td>0.44 (0.23-0.81)</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins</td>
<td>4세대 cephalosporins</td>
<td>22</td>
<td>1,128</td>
<td>0.78 (0.50-1.21)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3세대 cephalosporins</td>
<td>22</td>
<td>1,128</td>
<td>0.78 (0.50-1.21)</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td></td>
<td>혼합</td>
<td>12</td>
<td>710</td>
<td>0.44 (0.23-0.81)</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Quinolone</td>
<td>기본분석</td>
<td>9</td>
<td>463</td>
<td>0.83 (0.47-1.50)</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>세대 4 cephalosporins</td>
<td>5</td>
<td>346</td>
<td>0.35 (0.11-1.19)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>세대 3 cephalosporins</td>
<td>5</td>
<td>152</td>
<td>0.37 (0.17-0.84)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>혼합</td>
<td>5</td>
<td>318</td>
<td>0.34 (0.12, 0.94)</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides</td>
<td>기본분석</td>
<td>5</td>
<td>183</td>
<td>0.54 (0.18-1.63)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>비카바페넴</td>
<td>2</td>
<td>118</td>
<td>0.30 (0.12-0.73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>2</td>
<td>141</td>
<td>0.43 (0.17-1.12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14일 사망률</td>
<td>비카바페넴</td>
<td>2</td>
<td>118</td>
<td>0.30 (0.12-0.73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>2</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Non-BL/BLIs</td>
<td>기본분석</td>
<td>4</td>
<td>259</td>
<td>0.36 (0.19-0.68)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>2</td>
<td>118</td>
<td>0.30 (0.12-0.73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>2</td>
<td>141</td>
<td>0.43 (0.17-1.12)</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins</td>
<td>기본분석</td>
<td>4</td>
<td>259</td>
<td>0.36 (0.19-0.68)</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>2</td>
<td>118</td>
<td>0.30 (0.12-0.73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>2</td>
<td>141</td>
<td>0.43 (0.17-1.12)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7일 사망률</td>
<td>비카바페넴</td>
<td>2</td>
<td>118</td>
<td>0.30 (0.12-0.73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>2</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>BL/BLIs</td>
<td>기본분석</td>
<td>2</td>
<td>230</td>
<td>0.58 (0.03-11.58)</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>1</td>
<td>174</td>
<td>2.30 (0.26-20.21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>1</td>
<td>114</td>
<td>0.67 (0.15-2.96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4일 사망률</td>
<td>비카바페넴</td>
<td>2</td>
<td>230</td>
<td>0.58 (0.03-11.58)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>1</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>1</td>
<td>114</td>
<td>0.67 (0.15-2.96)</td>
</tr>
<tr>
<td></td>
<td>BL/BLIs</td>
<td>기본분석</td>
<td>2</td>
<td>230</td>
<td>0.58 (0.03-11.58)</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>1</td>
<td>174</td>
<td>2.30 (0.26-20.21)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>1</td>
<td>114</td>
<td>0.67 (0.15-2.96)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>균혈증 관련 사망률</td>
<td>비카바페넴</td>
<td>2</td>
<td>230</td>
<td>0.58 (0.03-11.58)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>하위군 분석</td>
<td>약제비교설계</td>
<td>1</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>약제비교설계</td>
<td>1</td>
<td>114</td>
<td>0.67 (0.15-2.96)</td>
</tr>
</tbody>
</table>
(5) 기타 결과변수

경험적 요법과 마찬가지로 확정적 요법에서 사망률 관련 지표 이외 기타 결과변수로 분류된 지표들은 문헌마다 보고한 형태가 상이하거나, 지표에 대한 정의가 각각 달라서 메타분석을 수행하는 것이 불가능하였다. 포함 문헌 중 Pilmis 등(2014)은 균혈증 환자와 요로감염 환자를 모두 포함하는 문헌으로 문헌상의 모든 결과지표에서 두 환자군을 통합하여 보고하여 균혈증 환자만의 자료를 추출하는 것이 불가능하였다. 문헌별 기타 결과변수의 세부 정보는 아래 표 16에서 확인할 수 있다.

표 16. 균혈증 확정적 요법에서 문헌별 기타 결과변수 요약

<table>
<thead>
<tr>
<th>문헌</th>
<th>문헌별 결과지표 명</th>
<th>카바페넴군 (%)</th>
<th>비카바페넴군 (%)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pilmis, 2014</td>
<td>30일 시점에서 임상적, 또는 미생물학적 재발</td>
<td>7/31 (22.6)</td>
<td>3/22 (13.6)</td>
<td>NR</td>
</tr>
<tr>
<td>Bin, 2006</td>
<td>임상적 성공</td>
<td>7/8 (87.5)</td>
<td>11/14 (78.6)</td>
<td>NR</td>
</tr>
<tr>
<td>Paterson, 2004</td>
<td>첫 배양검사 후 14일 생존자 중동반한 수포감염성 균혈증 발생자</td>
<td>5/40 (12.5)</td>
<td>3/25 (12.0)</td>
<td>NR</td>
</tr>
<tr>
<td>Rodriguez-Bano, 2011</td>
<td>재원기간*</td>
<td>13일(n=120)</td>
<td>13일(n=54)</td>
<td>0.04</td>
</tr>
</tbody>
</table>

*중위값, NR: not reported

BL/BLIs: β-lactam/β-lactamase inhibitors, CI: confidence interval, NA: not applicable
1.2. 요로감염

가. 문헌선정결과

본 연구에서는 ESBL 생성 장내세균에 의한 요로감염 환자에서 카바페넴 항생제의 안전성과 유효성을 다른 항생제와 비교하기 위하여 기존의 일차연구의 결과를 체계적으로 고찰하였다. 국내외 전자데이터베이스를 통해 검색된 문헌은 총 1,899편이었으며, 중복 문헌을 제외한 1,819편이 문헌선정과정에 사용되었다. 중복 제거된 문헌은 제목과 초록을 검토하여 83편을 연구주제와 관련 있는 문헌으로 선정하였다. 83편의 문헌은 원문을 검토한 후 문헌의 선택/배제 기준에 따라 총 6편의 문헌을 최종적으로 선정하였다(국외 6편, 국내 0편). 수기검색을 통해 추가된 문헌은 없었다.

본 연구의 문헌선정 흐름도는 아래 그림 49과 같으며, 최종 선택문헌 목록은 <부록 2.2>에 기술하였다.
나. 선정문헌의 일반적 특성

연구대상자의 질환은 요로감염, 복합성 하부요로감염, 신우신염이 각 2편(33.3%)씩으로 나타났다. 카바페넴군은 다양한 약물이 사용되었으며, 4편(66.7%)의 연구에서 2가지 이상의 카바페넴을 포함하고 있었다. 중복 응답 포함하여, imipenem을 사용한 연구가 5편(83.3%)으로 가장 많았으며, meropenem 4편(66.7%), ertapenem 1편(16.7%) 순으로 나타났다(표 17).
표 17. 요로감염 선정문헌 특성

<table>
<thead>
<tr>
<th>연번</th>
<th>저자</th>
<th>연도</th>
<th>출판 국가</th>
<th>연구단위</th>
<th>수집기간</th>
<th>연구디자인</th>
<th>연구대상자수</th>
<th>남/여</th>
<th>평균연령</th>
<th>군주</th>
<th>검열결과</th>
<th>결과변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Park</td>
<td>2014</td>
<td>한국</td>
<td>단일기관 (600병상)</td>
<td>2007.01 ~ 2013.12</td>
<td>후향적 코호트</td>
<td>급성 신우신염</td>
<td>152</td>
<td>85</td>
<td>67</td>
<td>41/111</td>
<td>E.coli</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Doi</td>
<td>2013</td>
<td>일본</td>
<td>단일기관 (588병상)</td>
<td>2008.8 ~ 2010.7</td>
<td>후향적 코호트</td>
<td>신우신염</td>
<td>22</td>
<td>12</td>
<td>10</td>
<td>10/12</td>
<td>NR</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Kaniga</td>
<td>2010</td>
<td>다국가 (6)</td>
<td>다기관 (44개)</td>
<td>2003.12 ~ 2006.3</td>
<td>전향적 코호트</td>
<td>복합성 하부요로감염</td>
<td>13</td>
<td>6</td>
<td>7</td>
<td>NR</td>
<td>51</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Senol</td>
<td>2010</td>
<td>터키</td>
<td>다기관 (입원 및 외래)</td>
<td>2005.5 ~ 2006.1</td>
<td>전향적 코호트</td>
<td>복합성 하부요로감염</td>
<td>47</td>
<td>20</td>
<td>27</td>
<td>20/27</td>
<td>57.5</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Bin</td>
<td>2006</td>
<td>중국</td>
<td>단일기관 (1200병상)</td>
<td>2002.10 ~ 2005.4</td>
<td>전향적 코호트</td>
<td>요로감염</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2/3</td>
<td>49.6</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

NR: not reported

a) 두 군의 평균연령의 평균값

b) 요로감염 287명 중, 약물치료를 받은 260명
다. 선정문헌의 비뚤림 위험

연구에 최종 선택된 6편의 코호트 연구에 대하여 RoBANS ver.2를 이용하여 문헌의 질평가를 수행하였으며, 각 개별 문헌의 질평가는 다음과 같다. ESBL 생성 요로감염을 대상으로 중재군과 비교군으로 명확하게 세팅된 연구는 3편으로, 요로감염 환자 중 ESBL 생성 환자의 결과만을 활용한 경우 또는 두 약제의 비교세팅 연구가 아닌 경우에 대상군 선정이 '불확실'로 평가되었다. 해당 약물복용 여부가 명확하지만 노출 측정은 '낮음'으로 평가되었다. 전체적으로 문헌의 방법론적인 절은 높지 않은 것으로 판단된다 (그림 50, 51).

![그림 50. 요로감염 비뚤림 위험 그래프](image1)

![그림 51. 요로감염 비뚤림 위험 평가결과요약](image2)
라. 분석 결과

해당 중재법의 효과는 미생물학적 치료 성공과 임상적 치료 성공을 주요결과로 보고하고 있었으며, 이를 구분하여 분석하였다.

중재법 및 대조군의 약물은 경험적(empirical) 요법이 1건, 확정적(definitive) 요법이 3건, 혼재되어 사용된 경우가 2건으로 나타났다(표 18).

표 18. 요로감염 중재법의 세부 특성

<table>
<thead>
<tr>
<th>연번</th>
<th>저자</th>
<th>출판연도</th>
<th>연구국가</th>
<th>치료방법</th>
<th>중재법</th>
<th>비교중재법</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Park</td>
<td>2014</td>
<td>한국</td>
<td>확정적 요법</td>
<td>Imipenem, Meropenem</td>
<td>NR</td>
</tr>
<tr>
<td>2</td>
<td>Doi</td>
<td>2013</td>
<td>일본</td>
<td>혼재</td>
<td>Meropenem, Imipenem/cilastatin</td>
<td>Cefmetazoline</td>
</tr>
<tr>
<td>3</td>
<td>Trivedi</td>
<td>2012</td>
<td>인도</td>
<td>혼재</td>
<td>Imipenem, Meropenem, Ertapenem</td>
<td>Cefoperazone + sulfactam, Peperacillin + tazobactam, Fluoroquinolones, Aminoglycosides, Chloramphenicol, Co-trimoxazole</td>
</tr>
<tr>
<td>4</td>
<td>Kaniga</td>
<td>2010</td>
<td>다국가</td>
<td>경험적 요법</td>
<td>Doripenem</td>
<td>Levofloxacin</td>
</tr>
<tr>
<td>5</td>
<td>Senol</td>
<td>2010</td>
<td>터키</td>
<td>확정적 요법</td>
<td>Meropenem, Imipenem</td>
<td>Fosfomycine tromethanol (FT)</td>
</tr>
<tr>
<td>6</td>
<td>Bin</td>
<td>2006</td>
<td>중국</td>
<td>확정적 요법</td>
<td>Imipenem</td>
<td>Ceftazidime</td>
</tr>
</tbody>
</table>

1) 미생물학적 치료 성공률

미생물학적 치료 성공률을 보고하고 있는 문헌은 4편으로, 소변 배양검사를 통한 치료 성공으로 정의하고 있다. 각 문헌에서 제시하고 있는 미생물학적 치료 성공의 기준은 아래의 표 19와 같다.

표 19. 요로감염 미생물학적 치료 성공의 정의

<table>
<thead>
<tr>
<th>저자</th>
<th>출판연도</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park</td>
<td>2014</td>
<td>미생물학적 치료는 추적관찰기간동안 재발 없이 지속적으로 소변 배양검사 결과가 음성(10<sup>3</sup>cfu/mL)인 경우로 정의됨. (Microbiological cure was defined as consistently negative urine culture (<10<sup>3</sup> cfu/mL) without recurrence during follow-up)</td>
</tr>
</tbody>
</table>
미생물학적 치료 성공은 치료 종료 후 7~9일에 실시된 소변 배양검사로 수행됨(Microbiological success: sterile control urine culture performed 7~9 days after the end of treatment).

미생물학적 치료 성공을 보고하고 있는 문헌은 총 4편으로 카바페넴군과 다른 항생제군은 미생물학적 치료 성공에 있어서 유의미한 차이가 없는 것으로 나타났다(OR=1.56, 95% CI 0.44-5.56).

약물 치료방법에 따른 결과를 확인했을 때, 경험적 요법 및 확정적 요법 결과를 보고한 문헌은 각 1편, 2편으로 카바페넴군과 다른 항생제군에 있어 유의한 차이가 없는 것으로 보고하였다(OR=6.00, 95% CI 0.42-85.25/ OR=1.05, 95% CI 0.17-6.52). 경험적, 확정적 요법이 혼재되어 사용된 1편의 문헌에서도 두 군간 미생물학적 치료 성공에 유의한 차이가 없는 것으로 나타났다(OR=2.40, 95% CI 0.16-34.93)(그림 52).
연구결과. Ⅲ

85

요로감염 미생물학적 치료 성공률

복합성 요로감염 대상자에서의 미생물학적 치료 성공에 대한 민감도 분석에서도 두 군간 유의미한 차이를 나타내지 못하였다 (OR=1.56, 95% CI 0.31-7.77) (그림 53).

2) 임상적 치료 성공률

임상적 치료 성공률을 보고하고 있는 문헌은 5편으로, 각 문헌에서 보고하고 있는 임상적 치료 성공의 기준이 약간씩 다르긴 하지만, 일반적으로 증상의 해소 및 호전을 임

<table>
<thead>
<tr>
<th>저자</th>
<th>출판연도</th>
<th>정의</th>
</tr>
</thead>
<tbody>
<tr>
<td>Park</td>
<td>2014</td>
<td>임상적 실패는 항생제 치료기간 동안 증상이 악화되거나 지속되고 추적관찰기간동안 초기 임상적 치료 후에 증상이 재발되는 경우 (임상적 재발)를 말함. (Clinical failure: Worsened or persistent symptoms during antibiotic therapy (deterioration) and recurrence of symptoms after initial clinical cure during follow-up (clinical relapse))</td>
</tr>
<tr>
<td>Doi</td>
<td>2013</td>
<td>임상적 치료율은 치료 종료 후 4주 시점에서의 결과 (Rate of clinical cure at 4 weeks after the completion of therapy)</td>
</tr>
<tr>
<td>Trivedi</td>
<td>2012</td>
<td>임상적 성공은 치료된 환자 및 임상적 호전을 보이는 환자 모두를 포함함 (Clinical success: include both cured patients and patients showing clinical improvement)</td>
</tr>
<tr>
<td>Senol</td>
<td>2010</td>
<td>임상적 성공은 증상이 해결된 경우로 정의됨 (Clinical success: resolution of symptoms)</td>
</tr>
<tr>
<td>Bin</td>
<td>2006</td>
<td>항생제 치료의 실패는 1) 항생제 치료 48시간 이후 지속되는 열 2) 72시간 항생제 사용에도 불구하고 배양검사 결과 양성 3) 치료 72시간 이후 패혈성 쇼크 4) 14일 이내 사망 환자 (Failure of antibiotic therapy: 1) persistence of fever after 48h of antibiotic treatment or 2) a positive culture for bacteremia despite 72h of antibiotic usage, or 3) septic shock after 72h of treatment, or 4) death of the patient within 14days)</td>
</tr>
</tbody>
</table>

카바페넴군과 다른 항생제군은 임상적 치료 성공에 있어서도 유의미한 차이가 없는 것으로 나타났다 (OR=1.86, 95% CI 0.51-6.84).

약물 치료방법(경험적/ 확정적 요법)에 따라, 임상적 치료 성공을 보고하고 있는 경험적 요법 연구는 없었다. 확정적 요법으로 사용된 3편의 문헌에서 다른 항생제군 사이에 유의미한 차이가 없는 것으로 나타났다 (OR=1.31, 95% CI 0.15-11.62). 그러나 경험적 요법과 확정적 요법이 혼재되어 있는 문헌에서는 카바페넴군이 유의미하게 높은 임상적 치료 성공률을 나타내고 있었다 (OR=3.27, 95% CI 1.17-9.11)(그림 54).
그림 54. 요로감염 임상적 치료 성공률

복합성 요로감염 대상자에서의 임상적 치료 성공에 대한 민감도 분석에서도, 두 군간 유의미한 차이를 나타내지 못하였다(OR=1.48, 95% CI 0.15-14.78)(그림 55).

그림 55. 요로감염 복합성 요로감염에서의 임상적 치료 성공률
2. 후향적 코호트 분석

2.1. 균혈증

가. 전체 연구대상자

2010년부터 2014년까지 본 연구의 선정기준에 부합하는 ESBL 생성균혈증 성인 환자는 총 699명이었다. 이들 중 적절한 경험적 약물사용이 없거나, 병원체(pathogen)가 중복되거나, 48시간 이상 사용된 경험적 약물이 두 개 이상이거나, 첫 경험적 약물 투여 후 48시간 이내 사망했거나, 확정적 약물을 병용 사용한 경우가 제외되어 총 분석대상자는 554명이었다(그림 56).

본 연구에 선정된 554명을 대상으로 항생제 종류에 따른 감수성을 확인한 결과 ESBL 생성E. coli 또는 K. pneumoniae 균주 모두에서 카바페넴계열 항생제(ertapenem, imipenem, meropenem)는 90% 이상의 높은 감수성(susceptible)을 보였다. 카바페넴계 이외의 항생제들 중에서는 tigecycline, piperacillin-tazobactam 등이 비교적 높은 감수성을 보였다(표 21).
<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>E. coli (n=403)</th>
<th>K. pneumoniae (n=151)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin-Clavulanic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>178 (44.2)</td>
<td>40 (26.5)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>153 (38.0)</td>
<td>57 (37.7)</td>
</tr>
<tr>
<td>Resistant</td>
<td>72 (17.9)</td>
<td>54 (35.8)</td>
</tr>
<tr>
<td>Piperacillin-tazobactam</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>285 (83.6)</td>
<td>46 (40.0)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>14 (4.1)</td>
<td>24 (20.9)</td>
</tr>
<tr>
<td>Resistant</td>
<td>42 (12.3)</td>
<td>45 (39.1)</td>
</tr>
<tr>
<td>Cefepime</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>203 (50.4)</td>
<td>70 (46.4)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>72 (17.9)</td>
<td>23 (15.2)</td>
</tr>
<tr>
<td>Resistant</td>
<td>128 (31.8)</td>
<td>58 (38.4)</td>
</tr>
<tr>
<td>Ertapenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>229 (98.3)</td>
<td>59 (95.2)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2 (0.9)</td>
<td>0</td>
</tr>
<tr>
<td>Resistant</td>
<td>2 (0.9)</td>
<td>3 (4.8)</td>
</tr>
<tr>
<td>Imipenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>403 (100.0)</td>
<td>149 (99.3)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resistant</td>
<td>0</td>
<td>1 (0.7)</td>
</tr>
<tr>
<td>Meropenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>167 (98.8)</td>
<td>87 (97.8)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Resistant</td>
<td>2 (1.2)</td>
<td>1 (1.1)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>217 (53.8)</td>
<td>63 (41.7)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>14 (3.5)</td>
<td>4 (2.6)</td>
</tr>
<tr>
<td>Resistant</td>
<td>172 (42.7)</td>
<td>84 (55.6)</td>
</tr>
<tr>
<td>Amikacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>388 (97.2)</td>
<td>136 (91.3)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>4 (1.0)</td>
<td>2 (1.3)</td>
</tr>
<tr>
<td>Resistant</td>
<td>7 (1.8)</td>
<td>11 (7.4)</td>
</tr>
<tr>
<td>Tobramycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>98 (51.3)</td>
<td>30 (31.9)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>54 (28.3)</td>
<td>22 (23.4)</td>
</tr>
<tr>
<td>Resistant</td>
<td>39 (20.4)</td>
<td>42 (44.7)</td>
</tr>
</tbody>
</table>
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법 간 임상효과 비교 연구

최종분석대상자들의 감염 균주 및 항생제 치료유형에 따른 항생제 사용현황을 분석하였다. 경험적 요법으로 가장 많이 투약된 항생제는 카바페넴이었으며, 이중 meropenem을 투여받은 환자가 126명으로 가장 많았고, 다음으로 cephalosporin계 항생제가 많이 투여되었는데(32.3%), ceftriaxone가 136명으로 다수를 차지하였다. 확정적 요법으로는 카바페넴계 항생제가 전체 대상자의 85.9% 로 매우 높은 사용을 보였 다(표 22).

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>E. coli (n=403)</th>
<th>K. pneumoniae (n=151)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>78 (33.6)</td>
<td>21 (32.8)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>14 (6.0)</td>
<td>4 (6.3)</td>
</tr>
<tr>
<td>Resistant</td>
<td>140 (60.3)</td>
<td>39 (60.9)</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>50 (29.4)</td>
<td>39 (44.8)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2 (1.2)</td>
<td>7 (8.0)</td>
</tr>
<tr>
<td>Resistant</td>
<td>118 (69.4)</td>
<td>41 (47.1)</td>
</tr>
<tr>
<td>Tigecycline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>232 (99.6)</td>
<td>55 (85.9)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>1 (0.4)</td>
<td>0</td>
</tr>
<tr>
<td>Resistant</td>
<td>0</td>
<td>9 (14.1)</td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>194 (48.1)</td>
<td>32 (21.2)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Resistant</td>
<td>209 (51.9)</td>
<td>119 (78.8)</td>
</tr>
</tbody>
</table>
경험적 요법의 항생제 사용 종류에 따른 확정적 요법의 항생제 사용을 교차표로 제시하였다(표 23). 경험적 요법으로 카바페넴을 사용한 후 확정적 요법으로 카바페넴을 사용한 환자는 총 191명이었고, 경험적 요법으로 비카바페넴계열을 사용한 후 확정적 요법으로 카바페넴을 사용한 환자는 총 277명이었다(191명 vs 277명). 이들 중 적절하게 항생제를 사용한 대상자에서 감수성이 있는 경우 경험적 요법시 카바페넴 사용여부에 따라 임상적 성과를 비교 분석하였다.

확정적 요법으로 카바페넴을 사용하고 경험적 요법도 카바페넴을 사용한 환자는 총

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Empirical therapy (n=554)</th>
<th>Definitive therapy (n=545)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenems</td>
<td>199 (35.9)</td>
<td>468 (85.9)</td>
</tr>
<tr>
<td>Imipenem</td>
<td>42 (7.6)</td>
<td>85 (15.6)</td>
</tr>
<tr>
<td>Meropenem</td>
<td>126 (22.7)</td>
<td>197 (36.1)</td>
</tr>
<tr>
<td>Doripenem</td>
<td>7 (1.3)</td>
<td>38 (7.0)</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>24 (4.3)</td>
<td>148 (27.2)</td>
</tr>
<tr>
<td>BL/BLIs**</td>
<td>103 (18.6)</td>
<td>46 (8.4)</td>
</tr>
<tr>
<td>Piperacillin-tazobactam (Pip/tazo)</td>
<td>100 (18.1)</td>
<td>43 (7.9)</td>
</tr>
<tr>
<td>Ampicillin–sulbactam (Amp/sul)</td>
<td>2 (0.4)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Amoxicillin–Clavulanic (Amox/Clav)</td>
<td>1 (0.2)</td>
<td>2 (0.4)</td>
</tr>
<tr>
<td>Ticarclillin/clavulanate (Ticar/Clav)</td>
<td>0</td>
<td>–</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>179 (32.3)</td>
<td>5 (0.9)</td>
</tr>
<tr>
<td>Cefepime</td>
<td>43 (7.8)</td>
<td>4 (0.7)</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>136 (24.5)</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>3 (0.5)</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>1 (0.2)</td>
<td>–</td>
</tr>
<tr>
<td>Amikacin</td>
<td>1 (0.2)</td>
<td>3 (0.6)</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>1 (0.2)</td>
<td>–</td>
</tr>
<tr>
<td>Quinolones</td>
<td>32 (5.8)</td>
<td>12 (2.2)</td>
</tr>
<tr>
<td>Ciprofloxacin-Levofloxacin (Cip/Lev)</td>
<td>32 (5.8)</td>
<td>12 (2.2)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>38 (6.9)</td>
<td>11 (2.0)</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>0</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Colistin</td>
<td>0</td>
<td>1 (0.2)</td>
</tr>
<tr>
<td>Trimethoprim–sulfamethoxazole (TMP/SMX)</td>
<td>1 (0.2)</td>
<td>8 (1.5)</td>
</tr>
<tr>
<td>Others</td>
<td>37 (6.7)</td>
<td>1 (0.2)</td>
</tr>
</tbody>
</table>

* 경험적 항생제 치료 후, 전원(transfer) 또는 사망된 자들 제외됨
** Beta–lactam/Beta–lactamase inhibitors

표 22. 균혈증 대상자에서 치료유형에 따른 항생제 사용현황
191명이었고, 확정적 요법으로 비카바페넴계열을 사용하고 경험적 치료로 카바페넴을 사용한 환자는 총 6명으로, 확정적 요법시 카바페넴 사용여부에 따른 임상적 성과 비교는 불가능 하였다(191명 vs 6명).

표 23. 균혈증 환자에서 경험적 요법 항생제 종류에 따른 확정적 요법 항생제 사용 현황

<table>
<thead>
<tr>
<th></th>
<th>Carbapenems</th>
<th>BL/BLIs</th>
<th>Empirical therapy</th>
<th>Aminoglycosides</th>
<th>Quinolones</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenems</td>
<td>191</td>
<td>65</td>
<td>158</td>
<td>2</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>BL/BLIs*</td>
<td>4</td>
<td>37</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Definitive therapy</td>
<td>Cephalosporins</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>기타</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

* Beta-lactam/Beta-lactamase inhibitors

나. 균혈증 환자에서 경험적 요법시 카바페넴과 비카바페넴의 비교

확정적 요법으로 카바페넴을 사용한 468명 중 경험적 요법으로 적절하게 항생제를 사용한 232명을 대상(카바페넴 183명, 비카바페넴 49명)으로 카바페넴 사용여부에 따른 임상적 안전성 및 효과성 비교분석을 수행하였다.

카바페넴군과 비카바페넴군의 기본적인 특성을 비교분석 하였다. 연령, 성별, 병원체 종류, 병소, 검사결과 등 다수의 변수에서 두 군간 통계적으로 유의한 차이는 없는 것으로 나타났으나, 임상적으로 치료결과에 영향을 줄 수 있는 감염경로에서는 카바페넴군의 표준발병 의료관련 감염이 높게 나타났으며(56.8% vs. 38.8%), 48시간 이내에 중환자실로 이송되는 경우도 카바페넴군이 비카바페넴군에 비해 높게 나타났다(36.1% vs 22.4%). 또한 폐질환, APACHE II 점수의 경우도 카바페넴군이 비카바페넴군에 비해 높게 나타났다. 성향점수 가중치 이후 두 군간 평균의 표준화차이도 10%를 넘는 변수가 없어, 카바페넴군과 비카바페넴군 사이의 기본 특성의 분포가 유사한 것을 확인하였다 (표 24).
표 24. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 일반적 특성 및 임상적 특성

<table>
<thead>
<tr>
<th>Demographic data</th>
<th>non-weighted</th>
<th>Stabilized PS weighted*</th>
<th>SMD***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (q1-q3)</td>
<td>61(50.75)</td>
<td>65(53.73)</td>
<td>0.66</td>
</tr>
<tr>
<td>Male</td>
<td>102 (55.7)</td>
<td>21 (42.9)</td>
<td>0.11</td>
</tr>
<tr>
<td>Pathogen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E. coli</td>
<td>121 (66.1)</td>
<td>38 (77.6)</td>
<td>0.13</td>
</tr>
<tr>
<td>K. pneumoniae</td>
<td>62 (33.9)</td>
<td>11 (22.4)</td>
<td>0.13</td>
</tr>
<tr>
<td>Acquisition of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community acquired</td>
<td>27 (14.8)</td>
<td>12 (24.5)</td>
<td>0.11</td>
</tr>
<tr>
<td>Healthcare associated</td>
<td>52 (28.4)</td>
<td>18 (36.7)</td>
<td>0.26</td>
</tr>
<tr>
<td>Hospital acquired</td>
<td>104 (56.8)</td>
<td>19 (38.8)</td>
<td>0.02</td>
</tr>
<tr>
<td>Intensive care unit (ICU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosed at ICU</td>
<td>20 (10.9)</td>
<td>2 (4.1)</td>
<td>0.18</td>
</tr>
<tr>
<td>Transferred to ICU within 48hrs</td>
<td>66 (36.1)</td>
<td>11 (22.4)</td>
<td>0.07</td>
</tr>
<tr>
<td>Site of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary bacteremia</td>
<td>45 (24.6)</td>
<td>11 (22.4)</td>
<td>0.76</td>
</tr>
<tr>
<td>Catheter related BSI</td>
<td>7 (3.8)</td>
<td>1 (2.0)</td>
<td>1.00</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>62 (33.9)</td>
<td>24 (49.0)</td>
<td>0.05</td>
</tr>
<tr>
<td>Intra-abdominal infection</td>
<td>55 (30.1)</td>
<td>10 (20.4)</td>
<td>0.18</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>8 (4.4)</td>
<td>1 (2.0)</td>
<td>0.69</td>
</tr>
<tr>
<td>Skin and soft tissue infection</td>
<td>4 (2.2)</td>
<td>1 (2.0)</td>
<td>1.00</td>
</tr>
<tr>
<td>CNS infection</td>
<td>2 (1.1)</td>
<td>0 - -</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Others</td>
<td>0 - 1 (2.0)</td>
<td>- -</td>
<td>1 (1.7)</td>
</tr>
<tr>
<td>Laboratory tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC, median (q1-q3)</td>
<td>9390(1290,14900)</td>
<td>11570(5880,17700)</td>
<td>0.07</td>
</tr>
<tr>
<td>Creatinine, median (q1-q3)</td>
<td>0.97(0.68,1.6)</td>
<td>0.955(0.73,1.7)</td>
<td>0.89</td>
</tr>
<tr>
<td>CRP, median (q1-q3)</td>
<td>9.74(2.76,21.54)</td>
<td>7.14(3.02,18.53)</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Ⅲ. 연구결과
<table>
<thead>
<tr>
<th>Non-weighted</th>
<th>Stabilized PS weighted*</th>
<th>SMD***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbapenem (n=183)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>non-Carbapenem (n=49)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>P-value**</td>
<td></td>
</tr>
<tr>
<td>Procalcitonin, median (q1-q3)</td>
<td>4.16(0.69, 21.82)</td>
<td>1.58(0.46, 6.69)</td>
</tr>
<tr>
<td>Underlying condition & Comorbidity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent operation Hx</td>
<td>32 (17.5)</td>
<td>11 (22.4)</td>
</tr>
<tr>
<td>Recent admission Hx</td>
<td>118 (64.5)</td>
<td>32 (65.3)</td>
</tr>
<tr>
<td>Recent antibiotics use</td>
<td>110 (60.1)</td>
<td>26 (53.1)</td>
</tr>
<tr>
<td>Liver disease</td>
<td>32 (17.5)</td>
<td>5 (10.2)</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>17 (9.3)</td>
<td>5 (10.2)</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>26 (14.2)</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Renal disease</td>
<td>45 (24.6)</td>
<td>17 (34.7)</td>
</tr>
<tr>
<td>Diabetes</td>
<td>68 (37.2)</td>
<td>15 (30.6)</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>34 (18.6)</td>
<td>7 (14.3)</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>6 (3.3)</td>
<td>2 (4.1)</td>
</tr>
<tr>
<td>Chemo/Radiotherapy</td>
<td>51 (27.9)</td>
<td>10 (20.4)</td>
</tr>
<tr>
<td>Solid cancer</td>
<td>64 (35.0)</td>
<td>23 (46.9)</td>
</tr>
<tr>
<td>Definitive setting</td>
<td>33 (18.0)</td>
<td>9 (18.4)</td>
</tr>
<tr>
<td>Palliative setting</td>
<td>31 (16.9)</td>
<td>14 (28.6)</td>
</tr>
<tr>
<td>Hematologic disease</td>
<td>46 (25.1)</td>
<td>7 (14.3)</td>
</tr>
<tr>
<td>Leukemia</td>
<td>27 (14.8)</td>
<td>4 (8.2)</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>20 (10.9)</td>
<td>3 (6.1)</td>
</tr>
<tr>
<td>Bone marrow transplantation</td>
<td>10 (5.5)</td>
<td>1 (2.0)</td>
</tr>
<tr>
<td>Solid organ transplantation</td>
<td>0 - 0 - 0 - 0 - 0 -</td>
<td></td>
</tr>
<tr>
<td>Scoring system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APACHE II, median (q1-q3)</td>
<td>16(12.22)</td>
<td>13(9.18)</td>
</tr>
<tr>
<td>CCI median (q1-q3)</td>
<td>2(2.5)</td>
<td>3(1.6)</td>
</tr>
</tbody>
</table>

* PS VARIABLES: sex, age, Transferred to ICU within 48hrs, Acquisition of infection, Site of infection (UTI), Pulmonary disease, Procalcitonin, APACHE score, CCI score
** Chi-square test or Fisher’s exact test for categorical data/Wilcoxon rank-sum test for continuous data
***SMD: Standardized difference of means
경험적 요법으로 카바페넴군과 비카바페넴군의 항생제 투여 현황을 제시하였다. 최초 경험적으로 투여한 항생제는 카바페넴군의 약 2/3가량이 meropenem을 사용하였고, 비카바페нем군의 83.7%는 piperacillin-tazobactam을 사용한 것으로 나타났다. 확정적으로 사용된 카바페넴계 항생제의 종류는 다소 차이가 나는데, 카바페넴군에서는 meropenem 사용이 가장 많았고(55.7%), 비카바페넴군에서는 ertapenem의 사용(61.2%)이 많았다(표 25).
표 25. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 항생제 사용 정보(카바페넴군 vs. 비카바페넴군)

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Empirical therapy</th>
<th>Definitive therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbapenem (n=183)</td>
<td>non-weighted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(n=49)</td>
</tr>
<tr>
<td>Carabapenems</td>
<td>Imipenem</td>
<td>40 (21.9)</td>
</tr>
<tr>
<td></td>
<td>Meropenem</td>
<td>119 (65.0)</td>
</tr>
<tr>
<td></td>
<td>Doripenem</td>
<td>7 (3.8)</td>
</tr>
<tr>
<td></td>
<td>Ertapenem</td>
<td>17 (9.3)</td>
</tr>
<tr>
<td>non-Carbapenems</td>
<td>Pip/tazo</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Amp/sul</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Cefepime</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ceftriaxone/Cefotaxime</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin/Levofoxacin</td>
<td>8</td>
</tr>
</tbody>
</table>

* sex, age, Transferred to ICU within 48hrs, Acquisition of infection, Site of infection(UTI), Pulmonary disease, Procalcitonin, APACHE score, CCI score
** Chi-square test or Fisher's exact test for categorical data/Wilcoxon rank-sum test for continuous data
카바페넴군과 비카바페넴군을 각 성과지표별로 비교하였다(표 26). 재원기간의 중앙값은 카바페넴군 18.5일, 비카바페넴군 15일로 나타났다. 30일 사망률의 경우 카바페넴군 11.4%, 비카바페넴군 6.3%로 다소 차이가 있었으나 통계적으로 유의하지 않았다 (p=0.4236). 감염관련 사망률 역시 두 군간 유의한 차이는 없는 것으로 나타났다. 항생제 관련 합병증은 매우 적게 발생하는 것으로 나타났다. 카바페넴군에서는 클로스트리듐 디페실리균성 설사(CDAD) 7건, 발열 3건, 약물발진 1건이 관찰되었고, 비카바페넴군에서는 경련성발작(Seizure) 1건, 신독성 1건, CDAD 1건이 발생하였다.

1주일 이내에 추적 혈액배양검사를 시행한 사람은 카바페넴군 160명, 비카바페넴군 43명이었으며, 이중 5일 이상까지도 음전이 확인되지 않은 환자는 각각 22명(13.8%), 5명(11.6%)으로 나타났다. 음전이 확인되기까지 균혈증이 지속된 시간의 중앙값은 카바페넴군 79.5시간, 비카바페넴군 69시간으로 카바페넴군에서 음전까지의 시간이 다소 길게 나타났으나, 성향점수 가중치 이후에는 모두 72일로 유의한 차이가 없는 것으로 나타났다. 카바페넴사용에 따른 30일 이내 사망률의 차이를 알아보기 위하여 Kaplan-Meier 분석을 시행한 결과 기본분석과 성향점수 가중치 분석 모두에서 유의한 차이가 없는 것으로 관찰되었다(P=0.33; P=0.65)(그림 57)(표 27).

기본 분석에서 30일 사망률에 대하여 콕스-비례 위험모형을 적용한 결과 단변량 분석에서는 감염획득경로, 48시간 이내 중환자실전진, 감염유형, APACHE II 점수, 간 질환, 폐 질환, 신 질환, 당뇨가 유의한 예측인자로 나타났으며(P<0.1)(표 26). 교란변수들을 보정한 다변량 분석결과에서도 카바페넴군과 비카바페넴군에서 30일 사망률은 통계적으로 차이가 없는 것으로 나타났다(HR=1.01, 95% CI 0.27-3.76)(표 28).

IPTW 가중치 분석에서 30일 사망률에 대하여 콕스-비례 위험모형을 적용한 결과 단변량 분석에서는 감염획득경로, 48시간 이내 중환자실전진, 감염유형, 폐질환, 당뇨, 혈압조직질환가 유의한 예측인자로 나타났으며(P<0.1). 교란변수들을 보정한 다변량 분석결과에서도 카바페넴군과 비카바페넴군에서 30일 사망률은 통계적으로 차이가 없는 것으로 나타났다(weighted HR=0.76, 95% CI 0.23-2.58)(표 28).
표 26. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 치료결과

<table>
<thead>
<tr>
<th>Variables</th>
<th>non-weighted</th>
<th>Stabilized PS weighted*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbapenem</td>
<td>non-Carbapenem</td>
</tr>
<tr>
<td></td>
<td>(n=183)</td>
<td>(n=49)</td>
</tr>
<tr>
<td></td>
<td>event</td>
<td>total</td>
</tr>
<tr>
<td>Length of stay(days), median (q1-q3)</td>
<td>18.5(12.5,32)</td>
<td>15(10,28)</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>4 181 (2.2)</td>
<td>1 49 (2.0)</td>
</tr>
<tr>
<td>14 days</td>
<td>8 180 (4.4)</td>
<td>2 48 (4.2)</td>
</tr>
<tr>
<td>30 days</td>
<td>20 175 (11.4)</td>
<td>3 48 (6.3)</td>
</tr>
<tr>
<td>Attributable mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>3 181 (1.7)</td>
<td>1 49 (2.0)</td>
</tr>
<tr>
<td>14 days</td>
<td>5 180 (2.8)</td>
<td>2 48 (4.2)</td>
</tr>
<tr>
<td>30 days</td>
<td>8 175 (4.6)</td>
<td>2 48 (4.2)</td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug rash</td>
<td>1 183 (0.5)</td>
<td>0 49 -</td>
</tr>
<tr>
<td>Drug fever</td>
<td>3 183 (1.6)</td>
<td>0 49 -</td>
</tr>
<tr>
<td>Seizure</td>
<td>0 183 -</td>
<td>1 49 (2.0)</td>
</tr>
<tr>
<td>Renal toxicity</td>
<td>0 183 -</td>
<td>1 49 (2.0)</td>
</tr>
<tr>
<td>CDAD</td>
<td>7 183 (3.8)</td>
<td>1 49 (2.0)</td>
</tr>
<tr>
<td>Microbiological outcome**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteremia duration to clear up (hours), median (q1-q3)</td>
<td>79.5(54,136.5)</td>
<td>69(48,96)</td>
</tr>
<tr>
<td>Persistent bacteremia over 5 days</td>
<td>22 160 (13.8)</td>
<td>5 43 (11.6)</td>
</tr>
</tbody>
</table>

* PS VARIABLES: sex, age, Transferred to ICU within 48hrs, Acquisition of infection, Site of infection(UTI), Pulmonary disease, Procalcitonin, APACHE score, CCI score

** Chi-square test or Fisher's exact test for categorical data/Wilcoxon rank-sum test for continuous data

***균혈증 양성판정일로부터 1주일 이내 follow-up 배양검사를 수행한 경우(카바페넴군 160명, 비카바페넴군 43명)에 대해서만 산출
표 27. 균혈증 경험적 요법시 카바페넴군과 비카바페넴군의 생존분석결과

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>event</th>
<th>survival days mean± SD (median)</th>
<th>total</th>
<th>event</th>
<th>survival days mean± SD (median)</th>
<th>p-value (log rank)</th>
</tr>
</thead>
<tbody>
<tr>
<td>non-weighted</td>
<td>183</td>
<td>20</td>
<td>27.84 ±5.88 (30)</td>
<td>49</td>
<td>3</td>
<td>28.43 ± 5.55 (30)</td>
<td>0.33</td>
</tr>
<tr>
<td>stabilized IPTW</td>
<td>183</td>
<td>18</td>
<td>28.03±5.57 (30)</td>
<td>47</td>
<td>3</td>
<td>27.72±6.31 (30)</td>
<td>0.65</td>
</tr>
</tbody>
</table>
표 28. 균혈증 경험적 요법시 카바페넴과 비카바페넴군의 콕스 비례위험모형 적합결과(30일 사망률)

<table>
<thead>
<tr>
<th>Variables</th>
<th>non-weighted</th>
<th>Multivariate analysis</th>
<th>Stabilized PS weight*</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Univariate analysis</td>
<td></td>
<td>Univariate analysis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HR</td>
<td>(95% CI)</td>
<td>P-value</td>
<td>HR</td>
</tr>
<tr>
<td>non-carbapenem use (ref carbapenem)</td>
<td>0.55</td>
<td>0.16</td>
<td>1.85</td>
<td>0.33</td>
</tr>
<tr>
<td>Demographic data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.02</td>
<td>0.99</td>
<td>1.04</td>
<td>0.28</td>
</tr>
<tr>
<td>Male</td>
<td>1.70</td>
<td>0.72</td>
<td>4.01</td>
<td>0.23</td>
</tr>
<tr>
<td>Pathogen</td>
<td>E.coli (ref K.pneumoniae)</td>
<td>0.76</td>
<td>0.30</td>
<td>1.92</td>
</tr>
<tr>
<td>Acquisition of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community acquired</td>
<td>2.24</td>
<td>0.92</td>
<td>5.44</td>
<td>0.08</td>
</tr>
<tr>
<td>Healthcare associated</td>
<td>0.47</td>
<td>0.16</td>
<td>1.37</td>
<td>0.17</td>
</tr>
<tr>
<td>Hospital acquired</td>
<td>0.99</td>
<td>0.44</td>
<td>2.23</td>
<td>0.97</td>
</tr>
<tr>
<td>Intensive care unit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosed at ICU</td>
<td>1.03</td>
<td>0.24</td>
<td>4.41</td>
<td>0.96</td>
</tr>
<tr>
<td>Transferred to ICU within 48hs</td>
<td>5.32</td>
<td>2.19</td>
<td>12.94</td>
<td><0.01</td>
</tr>
<tr>
<td>Site of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary bacteremia</td>
<td>0.85</td>
<td>0.31</td>
<td>2.28</td>
<td>0.74</td>
</tr>
<tr>
<td>Catheter related BSI</td>
<td>3.03</td>
<td>0.71</td>
<td>12.91</td>
<td>0.13</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>0.16</td>
<td>0.04</td>
<td>0.66</td>
<td>0.01</td>
</tr>
<tr>
<td>Intra-abdominal infection</td>
<td>2.95</td>
<td>1.30</td>
<td>6.69</td>
<td>0.01</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>2.66</td>
<td>0.62</td>
<td>11.37</td>
<td>0.19</td>
</tr>
<tr>
<td>Underlying condition & Comorbiditiy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent operation Hx</td>
<td>1.19</td>
<td>0.44</td>
<td>3.22</td>
<td>0.73</td>
</tr>
<tr>
<td>Recent admission Hx</td>
<td>1.54</td>
<td>0.61</td>
<td>3.91</td>
<td>0.36</td>
</tr>
<tr>
<td>Recent antibiotics use</td>
<td>0.92</td>
<td>0.40</td>
<td>2.10</td>
<td>0.84</td>
</tr>
<tr>
<td>Liver disease</td>
<td>2.51</td>
<td>1.03</td>
<td>6.11</td>
<td>0.04</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>0.92</td>
<td>0.22</td>
<td>3.90</td>
<td>0.90</td>
</tr>
</tbody>
</table>
Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
<th>Stabilized PS weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HR</td>
<td>(95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>4.60</td>
<td>1.95</td>
<td>10.87</td>
</tr>
<tr>
<td>Renal disease</td>
<td>2.33</td>
<td>1.02</td>
<td>5.31</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.26</td>
<td>0.08</td>
<td>0.88</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>0.22</td>
<td>0.03</td>
<td>1.61</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>3.16</td>
<td>0.74</td>
<td>13.46</td>
</tr>
<tr>
<td>Chemo/Radiotherapy</td>
<td>1.20</td>
<td>0.49</td>
<td>2.91</td>
</tr>
<tr>
<td>Solid cancer</td>
<td>1.28</td>
<td>0.56</td>
<td>2.92</td>
</tr>
<tr>
<td>Hematologic disease</td>
<td>0.69</td>
<td>0.24</td>
<td>2.04</td>
</tr>
<tr>
<td>Bone marrow transplantation</td>
<td>0.89</td>
<td>0.12</td>
<td>6.64</td>
</tr>
</tbody>
</table>

Scoring system

<table>
<thead>
<tr>
<th>Scoring system</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>APACHE II</td>
<td>1.07</td>
<td>1.01</td>
</tr>
<tr>
<td>CCI score</td>
<td>1.07</td>
<td>0.92</td>
</tr>
</tbody>
</table>

*PS VARIABLES: sex, age, Transferred to ICU within 48 hrs, Acquisition of infection, Site of infection(UTI), Pulmonary disease, Procalcitonin, APACHE score, CCI score
다. 균혈증 환자에서 경험적 요법시 카바페넴과 BL/BLIs의 비교

확정적 요법으로 카바페넴을 사용한 256명중 적절하게 항생제를 사용한 224명을 대상(카바페넴 183명, BL/BLIs 41명)으로 경험적 요법시 카바페넴 사용여부에 따른 임상적 안전성 및 효과성 비교분석을 수행하였다.

카바페넴군과 BL/BLIs군의 기본적인 특성을 제시하였다. 연령, 성별, 병원체 종류, 병소, 검사결과, 중환자실 이용 등 다수의 변수에서 두 군간 통계적으로 유의한 차이는 없는 것으로 나타났으나, 감염경로에서는 카바페넴군의 병원발병 의료관련 감염이 BL/BLIs 군에 비해 유의하게 높게 나타났다(56.8% vs. 39.0%). 폐질환도 카바페넴군에서 유의하게 높게 나타났고(14.2% vs. 2.4%), 성향점수 가중치 이후에도 유의한 차이가 있었다. 성향점수 가중치 이후 두 군간 평균의 표준화차이도 10%를 넘는 변수가 없어, 카바페넴군과 비카바페넴군 사이의 기본 특성의 분포가 유사해진 것을 확인하였다(표 29).

카바페넴군과 BL/BLIs군의 항생제 투여 현황을 제시하였다. 최초 경험적으로 투여한 항생제는 카바페넴군의 65%가 meropenem을 사용하였고, BL/BLIs군은 모두 piperacillin-tazobactam을 사용한 것으로 나타났다. 확정적으로 사용된 카바페넴계 항생제의 종류는 다소 차이가 났는데, 카바페넴군에서는 meropenem 사용이 가장 많았고(55.7%), BL/BLIs군에서는 ertapenem의 사용(58.8%)이 많았다(표 30).
<table>
<thead>
<tr>
<th>Variables</th>
<th>non-weighted</th>
<th>Stabilized PS weighted*</th>
<th>SMD***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, median (q1-q3)</td>
<td>61(50, 75)</td>
<td>63(54, 73)</td>
<td>0.14</td>
</tr>
<tr>
<td>Male</td>
<td>102 (55.7)</td>
<td>20 (48.8)</td>
<td>0.42</td>
</tr>
<tr>
<td>Pathogen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.coli</td>
<td>121 (66.1)</td>
<td>31 (75.6)</td>
<td>0.24</td>
</tr>
<tr>
<td>K.pneumoniae</td>
<td>62 (33.9)</td>
<td>10 (24.4)</td>
<td>0.24</td>
</tr>
<tr>
<td>Acquisition of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community acquired</td>
<td>27 (14.8)</td>
<td>8 (19.5)</td>
<td>0.45</td>
</tr>
<tr>
<td>Healthcare associated</td>
<td>52 (28.4)</td>
<td>17 (41.5)</td>
<td>0.10</td>
</tr>
<tr>
<td>Hospital acquired</td>
<td>104 (56.8)</td>
<td>16 (39.0)</td>
<td>0.04</td>
</tr>
<tr>
<td>Intensive care unit (ICU)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosed at ICU</td>
<td>20 (10.9)</td>
<td>1 (2.4)</td>
<td>0.14</td>
</tr>
<tr>
<td>Transferred to ICU within 48hrs</td>
<td>66 (36.1)</td>
<td>11 (26.8)</td>
<td>0.26</td>
</tr>
<tr>
<td>Site of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary bacteremia</td>
<td>45 (24.6)</td>
<td>10 (24.4)</td>
<td>0.98</td>
</tr>
<tr>
<td>Catheter related BSI</td>
<td>7 (3.8)</td>
<td>0</td>
<td>6 (3.5)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>62 (33.9)</td>
<td>18 (43.9)</td>
<td>0.23</td>
</tr>
<tr>
<td>Intra-abdominal infection</td>
<td>55 (30.1)</td>
<td>10 (24.4)</td>
<td>0.47</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>8 (4.4)</td>
<td>1 (2.4)</td>
<td>1.00</td>
</tr>
<tr>
<td>Skin and soft tissue infection</td>
<td>4 (2.2)</td>
<td>1 (2.4)</td>
<td>1.00</td>
</tr>
<tr>
<td>CNS infection</td>
<td>2 (1.1)</td>
<td>0</td>
<td>2 (1.0)</td>
</tr>
<tr>
<td>Others</td>
<td>0</td>
<td>1 (2.4)</td>
<td>1 (1.4)</td>
</tr>
<tr>
<td>Laboratory tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WBC, median (q1-q3)</td>
<td>9390(1290, 14900)</td>
<td>11100(5200, 18540)</td>
<td>0.17</td>
</tr>
<tr>
<td>Creatinine, median (q1-q3)</td>
<td>0.97(0.68, 1.6)</td>
<td>0.96(0.66, 1.9)</td>
<td>0.86</td>
</tr>
<tr>
<td>CRP, median (q1-q3)</td>
<td>9.74(2.76, 21.54)</td>
<td>7.62(3.57, 19.07)</td>
<td>0.70</td>
</tr>
</tbody>
</table>

표 29. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 일반적 특성 및 임상적 특성
ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안 치료법 비교 연구

<table>
<thead>
<tr>
<th>Variables</th>
<th>non-weighted</th>
<th>Stabilized PS weighted*</th>
<th>SMD***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Procalcitonin, median (q1-q3)</td>
<td>4.16(0.69, 21.82)</td>
<td>1.345(0.45, 9.465)</td>
<td>0.22</td>
</tr>
<tr>
<td>Carbapenem (n=183)</td>
<td>4.41(0.69, 29.31)</td>
<td>0.96(0.42, 3.08)</td>
<td>0.10</td>
</tr>
<tr>
<td>BL/BLIs (n=41)</td>
<td>4.41(0.69, 29.31)</td>
<td>0.96(0.42, 3.08)</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Underlying condition & Comorbidity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Carbapenem (n=183)</th>
<th>BL/BLIs (n=41)</th>
<th>P-value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent operation Hx</td>
<td>32 (17.5)</td>
<td>9 (22.0)</td>
<td>0.50</td>
</tr>
<tr>
<td>Recent admission Hx</td>
<td>118 (64.5)</td>
<td>29 (70.7)</td>
<td>0.45</td>
</tr>
<tr>
<td>Recent antibiotics use</td>
<td>110 (60.1)</td>
<td>23 (56.1)</td>
<td>0.64</td>
</tr>
<tr>
<td>Liver disease</td>
<td>32 (17.5)</td>
<td>5 (12.2)</td>
<td>0.41</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>17 (9.3)</td>
<td>4 (9.8)</td>
<td>1.00</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>26 (14.2)</td>
<td>1 (2.4)</td>
<td>0.03</td>
</tr>
<tr>
<td>Renal disease</td>
<td>45 (24.6)</td>
<td>13 (31.7)</td>
<td>0.35</td>
</tr>
<tr>
<td>Diabetes</td>
<td>68 (37.2)</td>
<td>13 (31.7)</td>
<td>0.51</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>34 (18.6)</td>
<td>6 (14.6)</td>
<td>0.55</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>6 (3.3)</td>
<td>2 (4.9)</td>
<td>0.64</td>
</tr>
<tr>
<td>Chemo/Radiotherapy</td>
<td>51 (27.9)</td>
<td>9 (22.0)</td>
<td>0.44</td>
</tr>
<tr>
<td>Solid cancer</td>
<td>64 (35.0)</td>
<td>21 (51.2)</td>
<td>0.05</td>
</tr>
<tr>
<td>Definitive setting</td>
<td>33 (18.0)</td>
<td>8 (19.5)</td>
<td>0.82</td>
</tr>
<tr>
<td>Palliative setting</td>
<td>31 (16.9)</td>
<td>13 (31.7)</td>
<td>0.03</td>
</tr>
<tr>
<td>Hematologic disease</td>
<td>46 (25.1)</td>
<td>7 (17.1)</td>
<td>0.27</td>
</tr>
<tr>
<td>Leukemia</td>
<td>27 (14.8)</td>
<td>4 (9.8)</td>
<td>0.40</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>20 (10.9)</td>
<td>3 (7.3)</td>
<td>0.78</td>
</tr>
<tr>
<td>Bone marrow transplantation</td>
<td>10 (5.5)</td>
<td>1 (2.4)</td>
<td>0.69</td>
</tr>
<tr>
<td>Solid organ transplantation</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Scoring system

<table>
<thead>
<tr>
<th>Scoring system</th>
<th>APACHE II, median (q1-q3)</th>
<th>Charlson WIC, median (q1-q3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>16(12, 22)</td>
<td>2(2. 5)</td>
</tr>
<tr>
<td></td>
<td>13(9, 19)</td>
<td>3(2, 6)</td>
</tr>
<tr>
<td></td>
<td>0.02</td>
<td>0.71</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.80</td>
</tr>
</tbody>
</table>

* PS VARIABLES : sex, age, Transferred to ICU within 48hrs, Acquisition of infection, Site of infection (UTI), CRP, procacitonin, APACHE II score, CCI score

** Chi-square test or Fisher's exact test for categorical data/Wilcoxon rank-sum test for continuous data

***SMD: Standardized difference of means
표 30. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 항생제 사용 정보

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>non-weighted</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>Stabilized PS weighted*</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbapenem</td>
<td>BL/BLIs</td>
<td>P-value**</td>
<td>Carbapenem</td>
<td>BL/BLIs</td>
<td>P-value**</td>
<td>Carbapenem</td>
<td>BL/BLIs</td>
<td>P-value**</td>
</tr>
<tr>
<td></td>
<td>(n=183)</td>
<td>(n=41)</td>
<td></td>
<td>(n=183)</td>
<td>(n=42)</td>
<td></td>
<td>(n=183)</td>
<td>(n=42)</td>
<td></td>
</tr>
<tr>
<td>Empirical therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbapenems</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem</td>
<td>40 (21.9)</td>
<td>-</td>
<td></td>
<td>40 (21.9)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>119 (65.0)</td>
<td>-</td>
<td></td>
<td>119 (64.9)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doripenem</td>
<td>7 (3.8)</td>
<td>-</td>
<td></td>
<td>7 (3.8)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertapenem</td>
<td>17 (9.3)</td>
<td>-</td>
<td></td>
<td>18 (9.6)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL/BLIs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pip/tazo</td>
<td></td>
<td>41 (100.0)</td>
<td></td>
<td></td>
<td></td>
<td>39 (94.0)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definitive therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Imipenem</td>
<td>35 (19.1)</td>
<td>5 (12.2)</td>
<td>0.30</td>
<td>34 (18.8)</td>
<td>4 (10.9)</td>
<td>0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meropenem</td>
<td>102 (55.7)</td>
<td>11 (26.8)</td>
<td><0.01</td>
<td>101 (55.0)</td>
<td>16 (41.0)</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doripenem</td>
<td>6 (3.3)</td>
<td>1 (2.4)</td>
<td>1</td>
<td>6 (3.3)</td>
<td>0 (1.1)</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ertapenem</td>
<td>40 (21.9)</td>
<td>24 (58.5)</td>
<td><0.01</td>
<td>42 (23.1)</td>
<td>18 (45.8)</td>
<td><0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* PS VARIABLES : sex, age, Transferred to ICU within 48hrs, Acquisition of infection, Site of infection(UTI), CRP, pulmonary procalcitonin, APACHE II score, CCI score

** Chi-square test or Fisher’s exact test for categorical data/Wilcoxon rank-sum test for continuous data
카바페넴군과 BL/BLIs군을 각 성과지표별로 비교하였다. 재원기간의 중앙값은 카바페넴군 18.5일, BL/BLIs군 15일로 나타났다. 30일 사망률의 경우 카바페넴군 11.4%, BL/BLIs군 7.5%이었으며 통계적으로 유의하지 않았다(P=0.582). 감염관련 사망률 역시 두 군간 유의한 차이는 없는 것으로 나타났다. 항생제관련 항병증은 매우 적게 발생하는 것으로 나타났다. 카바페넴군에서는 CDAD 7건, 발열 3건, 약물발진 1건이 관찰되었고, BL/BLIs군에서는 경련발작(Seizure) 1건, CDAD 1건이 발생하였다.

1주일 이내에 혈액검사를 시행한 사람은 카바페넴군 160명, BL/BLIs군은 37명이었으며, 이중 5일 이상까지 음전이 확인되지 않은 환자는 각각 22명(13.8%), 3명(8.1%)로 나타났다. 음전이 확인되기까지 균혈증이 지속된 시간의 중앙값은 카바페넴군 79.5시간, BL/BLIs군 69시간으로 카바페넴군에서 카바페넴군에서 음전까지의 시간이 다소 길게 나타났으나, 성향 점수 가중치 이후에는 모두 각각 72일, 70일로 유의한 차이가 없는 것으로 나타났다(표 31).

카바페넴사용에 따른 30일 이내 사망률의 차이를 알아보기 위하여 Kaplan-Meier 분석을 시행한 결과 기본분석과 성향점수 가중치 분석 모두에서 유의한 차이가 없는 것으로 관찰되었다(P=0.51; P=0.97)(그림 58)(표 32).

기본 분석에서 30일 사망률에 대하여 콕스-비례 위험모형을 적용한 결과 단변량 분석에서는 감염확득경로, 48시간 이내 중환자실전환, 감염유형, APACHE II 점수, 간 질환, 폐 질환, 신 질환, 당뇨가 유의한 예측인자로 나타났으며(P<0.1)(표 30). 교란변수들을 보정한 다변량 분석결과에서도 카바페넴군과 BL/BLIs군에서 30일 사망률은 통계적으로 차이가 없는 것으로 나타났다(HR=1.10, 95% CI 0.30-4.09)(표 33).

IPTW 가중치 분석에서 30일 사망률에 대하여 콕스-비례 위험모형을 적용한 결과 단변량 분석에서는 감염확득경로, 48시간 이내 중환자실전환, 감염유형, APACHE II 점수, 폐 질환, 신 질환, 당뇨, 결합조직질환이 유의한 예측인자로 나타났으며(P<0.1), 교란변수들을 보정한 다변량 분석결과에서도 카바페넴군과 BL/BLIs군에서 30일 사망률은 통계적으로 차이가 없는 것으로 나타났다(weighted HR=0.99, 95% CI 0.29-3.30)(표 33).
연구결과

Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>non-weighted</th>
<th></th>
<th></th>
<th></th>
<th>Stabilized PS weighted*</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Carbanemn (n=183)</td>
<td>BL/BLIs (n=41)</td>
<td></td>
<td>Carbanemn (n=183)</td>
<td>BL/BLIs (n=42)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>event</td>
<td>total</td>
<td>%</td>
<td>event</td>
<td>total</td>
<td>%</td>
<td>event</td>
<td>total</td>
</tr>
<tr>
<td>Length of stay(days), median (q1-q3)</td>
<td>18.5(12.5,32)</td>
<td>15(10,28)</td>
<td>0.16</td>
<td>18(13,32)</td>
<td>19(11,32)</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>4</td>
<td>182</td>
<td>2.2</td>
<td>1</td>
<td>41</td>
<td>2.4</td>
<td>1.00</td>
<td>4</td>
</tr>
<tr>
<td>14 days</td>
<td>8</td>
<td>181</td>
<td>4.4</td>
<td>2</td>
<td>40</td>
<td>5.0</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>30 days</td>
<td>20</td>
<td>176</td>
<td>11.4</td>
<td>3</td>
<td>40</td>
<td>7.5</td>
<td>0.58</td>
<td>19</td>
</tr>
<tr>
<td>Attributable mortality</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>3</td>
<td>182</td>
<td>1.6</td>
<td>1</td>
<td>41</td>
<td>2.4</td>
<td>0.56</td>
<td>3</td>
</tr>
<tr>
<td>14 days</td>
<td>5</td>
<td>181</td>
<td>2.8</td>
<td>2</td>
<td>40</td>
<td>5.0</td>
<td>0.62</td>
<td>5</td>
</tr>
<tr>
<td>30 days</td>
<td>8</td>
<td>176</td>
<td>4.5</td>
<td>2</td>
<td>40</td>
<td>5.0</td>
<td>1.00</td>
<td>7</td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug rash</td>
<td>1</td>
<td>176</td>
<td>0.6</td>
<td>0</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Drug fever</td>
<td>3</td>
<td>176</td>
<td>1.7</td>
<td>0</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>3</td>
</tr>
<tr>
<td>Seizure</td>
<td>0</td>
<td>176</td>
<td>-</td>
<td>1</td>
<td>40</td>
<td>2.5</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>Renal toxicity</td>
<td>0</td>
<td>176</td>
<td>-</td>
<td>0</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
<tr>
<td>CDAD</td>
<td>7</td>
<td>176</td>
<td>4.0</td>
<td>1</td>
<td>40</td>
<td>2.5</td>
<td>-</td>
<td>6.3</td>
</tr>
<tr>
<td>Microbiological outcome**</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteremia duration median (h)</td>
<td>79.5(54,136.5)</td>
<td>69(48,96)</td>
<td>0.39</td>
<td>72(49,96)</td>
<td>70(50,80)</td>
<td>0.66</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Persistent bacteremia over 5 days</td>
<td>22</td>
<td>160</td>
<td>13.8</td>
<td>3</td>
<td>37</td>
<td>8.1</td>
<td>0.43</td>
<td>22</td>
</tr>
</tbody>
</table>

* PS variables: sex, age, Transferred to ICU within 48hrs, Acquisition of infection, Site of infection(UTI), Pulmonary disease, Procalcitonin, APACHE score, CCI score

** Chi-square test or Fisher’s exact test for categorical data/Wilcoxon rank-sum test for continuous data

***균혈증 양성판정일로부터 1주일 이내 follow-up 배양검사를 수행한 경우(카바페넴군 160명, 비카바페넴군 37명)에 대해서만 산출
표 32. 균혈증 경험적 요법시 카바페넴군과 BL/BLIs군의 생존분석결과

<table>
<thead>
<tr>
<th></th>
<th>carbapenem</th>
<th>BL/BLIs</th>
<th>p-value (log rank)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>event</td>
<td>mean± SD (median)</td>
</tr>
<tr>
<td>non-weighted</td>
<td>183</td>
<td>20</td>
<td>27.84 ± 5.88 (30)</td>
</tr>
<tr>
<td>stabilized IPTW</td>
<td>183</td>
<td>18</td>
<td>27.99 ± 5.64 (30)</td>
</tr>
</tbody>
</table>

그림 58. 균혈증 카플란-마이어 생존분석(카바페넴군 vs. BL/BLIs군)
표 33. 균혈증 경험적 요법시 카바페넴과 BL/BLIs군의 콕스 비례위험모형 적합결과(30일 사망률)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
<th>Stabilized PS weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>non-weighted</td>
<td>non-weighted</td>
<td>non-weighted</td>
</tr>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>P-value</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td>BL/BLIs use (ref carbapenem)</td>
<td>0.67 0.20 2.24 0.51</td>
<td>1.10 0.30 4.09 0.88</td>
<td>0.94 0.30 2.93 0.91</td>
</tr>
<tr>
<td>Demographic data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>1.02 0.99 1.05 0.21</td>
<td>1.02 0.99 1.05 0.20</td>
<td>1.04 1.00 1.07 0.05</td>
</tr>
<tr>
<td>Male</td>
<td>1.60 0.68 3.77 0.28</td>
<td>1.37 0.58 3.22 0.47</td>
<td></td>
</tr>
<tr>
<td>Pathogen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.coli (ref K.pneumoniae)</td>
<td>0.73 0.29 1.86 0.51</td>
<td>0.70 0.27 1.85 0.47</td>
<td></td>
</tr>
<tr>
<td>Acquisition of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community acquired</td>
<td>2.47 1.02 6.00 0.05</td>
<td>2.35 0.84 6.55 0.10</td>
<td>2.52 1.02 6.17 0.04</td>
</tr>
<tr>
<td>Healthcare associated</td>
<td>0.45 0.15 1.33 0.15</td>
<td>0.43 0.14 1.28 0.13</td>
<td></td>
</tr>
<tr>
<td>Hospital acquired</td>
<td>0.96 0.43 2.18 0.93</td>
<td>0.99 0.43 2.27 0.98</td>
<td></td>
</tr>
<tr>
<td>Intensive care unit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnosed at ICU</td>
<td>1.06 0.25 4.50 0.94</td>
<td>0.91 0.19 4.35 0.90</td>
<td></td>
</tr>
<tr>
<td>Transferred to ICU within 48hrs</td>
<td>5.04 2.07 12.26 <0.01</td>
<td>4.75 1.70 13.31 <0.01</td>
<td>3.92 1.66 9.28 <0.01</td>
</tr>
<tr>
<td>Site of infection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary bacteremia</td>
<td>0.83 0.31 2.22 0.70</td>
<td>0.98 0.38 2.56 0.97</td>
<td></td>
</tr>
<tr>
<td>Catheter related BSI</td>
<td>3.45 0.81 14.72 0.09</td>
<td>3.38 0.71 16.16 0.13</td>
<td></td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>0.16 0.04 0.70 0.01</td>
<td>0.18 0.04 0.94 0.04</td>
<td>0.11 0.02 0.62 0.01</td>
</tr>
<tr>
<td>Intra-abdominal infection</td>
<td>2.80 1.24 6.35 0.01</td>
<td>1.31 0.50 3.46 0.58</td>
<td>2.91 1.26 6.70 0.01</td>
</tr>
<tr>
<td>Respiratory tract infection</td>
<td>2.56 0.60 10.94 0.20</td>
<td>2.64 0.55 12.83 0.23</td>
<td></td>
</tr>
<tr>
<td>Underlying condition & Comorbidity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent operation Hx</td>
<td>1.21 0.45 3.27 0.70</td>
<td>1.05 0.36 3.05 0.93</td>
<td></td>
</tr>
<tr>
<td>Recent admission Hx</td>
<td>1.47 0.58 3.73 0.42</td>
<td>1.61 0.61 4.20 0.33</td>
<td></td>
</tr>
<tr>
<td>Recent antibiotics use</td>
<td>0.89 0.39 2.03 0.78</td>
<td>0.86 0.37 1.98 0.72</td>
<td></td>
</tr>
<tr>
<td>Liver disease</td>
<td>2.40 0.99 5.84 0.05</td>
<td>1.65 0.64 4.29 0.30</td>
<td></td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>0.93 0.22 3.96 0.92</td>
<td>1.11 0.26 4.82 0.89</td>
<td></td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>4.41 1.87 10.42 <0.01</td>
<td>1.68 0.63 4.51 0.30</td>
<td>3.68 1.49 9.12 <0.01</td>
</tr>
<tr>
<td>Variables</td>
<td>Univariate analysis non-weighted</td>
<td>Multivariate analysis</td>
<td>Stabilized PS weight*</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td></td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
<td>HR (95% CI)</td>
</tr>
<tr>
<td></td>
<td>P-value</td>
<td>P-value</td>
<td>P-value</td>
</tr>
<tr>
<td>Renal disease</td>
<td>2.45 (1.08, 5.60)</td>
<td>1.41 (0.51, 3.89)</td>
<td>2.10 (0.89, 4.94)</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.51</td>
<td>0.09</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.26 (0.08, 0.86)</td>
<td>0.29 (0.08, 1.04)</td>
<td>0.28 (0.08, 0.94)</td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td>0.06</td>
<td>0.04</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>0.21 (0.03, 1.59)</td>
<td>0.20 (0.02, 1.62)</td>
<td>0.15 (0.03, 0.74)</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>3.04 (0.71, 12.95)</td>
<td>3.60 (0.84, 15.54)</td>
<td>7.69 (1.04, 56.83)</td>
</tr>
<tr>
<td>Chemo/Radiotherapy</td>
<td>1.16 (0.48, 2.83)</td>
<td>1.50 (0.63, 3.57)</td>
<td>1.00 (0.59, 1.85)</td>
</tr>
<tr>
<td>Solid cancer</td>
<td>1.25 (0.55, 2.86)</td>
<td>1.10 (0.48, 2.57)</td>
<td>0.55 (0.16, 1.85)</td>
</tr>
<tr>
<td>Definitive setting</td>
<td>2.04 (0.84, 4.97)</td>
<td>1.89 (0.75, 4.76)</td>
<td>0.78 (0.28, 2.20)</td>
</tr>
<tr>
<td>Palliative setting</td>
<td>0.59 (0.17, 1.97)</td>
<td>0.55 (0.16, 1.85)</td>
<td>0.28 (1.06, 0.71)</td>
</tr>
<tr>
<td>Hematologic disease</td>
<td>0.66 (0.22, 1.94)</td>
<td>0.78 (0.28, 2.20)</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Scoring system

- APACHE II: 1.07 (1.01, 1.13) 1.01 (0.94, 1.09) 1.05 (1.00, 1.11) 1.06 (0.99, 1.02) 1.06 (0.97, 1.09)
- Charlson WIC: 1.96 (0.91, 1.25) 1.25 (0.87, 1.20) 0.75

* PS variables: sex, age, Transferred to ICU within 48hrs, Acquisition of infection, Site of infection(UTI), CRP, pulmonary procalcitonin, APACHE II score, CCI score
2.2 요로감염
가. 전체 연구대상자

2011년부터 2014년까지 본 연구의 선정대상 기준에 부합하는 ESBL 생성 상부요로감염 성인 환자는 총 1,121명이었다. 이들 중 적절한 경험적 약물 사용이 없거나, 병원체(pathogen)가 중복되거나, 첫 경험적 약물을 사용한 경우가 제외되어 최종 분석대상자는 총 319명이었다. (그림 59).

본 연구에 선정된 319명을 대상으로 항생제 종류에 따른 감수성을 확인한 결과 ESBL 생성 E. coli 또는 K. pneumoniae 균주 모두에서 카바페네메탈 항생제 (ertapenem, imipenem, meropenem) 모두 90%이상의 높은 감수성 (susceptible)을 보였다. 카바페네메탈 밖의 항생제들 중에서는 tigecycline, amikacin, piperacillin-tazobactam 등이 비교적 높은 감수성을 보였다. (표 34).

표 34. 요로감염 대상자에서 병원체에 따른 항생제 감수성 결과

<table>
<thead>
<tr>
<th>Antbiotics</th>
<th>E. coli (n=272)</th>
<th>K. pneumoniae (n=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin-Clavulanic</td>
<td>Susceptible 145 (53.3)</td>
<td>10 (21.3)</td>
</tr>
<tr>
<td></td>
<td>Intermediate 93 (34.2)</td>
<td>17 (36.2)</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>E. coli (n=272)</td>
<td>K. pneumoniae (n=47)</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(88.2)</td>
<td>(100.0)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>(6.8)</td>
<td>7</td>
</tr>
<tr>
<td>Resistant</td>
<td>(5.0)</td>
<td>14</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(55.5)</td>
<td>28</td>
</tr>
<tr>
<td>Intermediate</td>
<td>(14.3)</td>
<td>7</td>
</tr>
<tr>
<td>Resistant</td>
<td>(30.1)</td>
<td>26</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(100.0)</td>
<td>(100.0)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Resistant</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(100.0)</td>
<td>7</td>
</tr>
<tr>
<td>Intermediate</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Resistant</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(54.6)</td>
<td>23</td>
</tr>
<tr>
<td>Intermediate</td>
<td>(4.1)</td>
<td>2</td>
</tr>
<tr>
<td>Resistant</td>
<td>(41.3)</td>
<td>22</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(98.1)</td>
<td>40</td>
</tr>
<tr>
<td>Intermediate</td>
<td>(0.4)</td>
<td>–</td>
</tr>
<tr>
<td>Resistant</td>
<td>(1.5)</td>
<td>3</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(54.0)</td>
<td>4</td>
</tr>
<tr>
<td>Intermediate</td>
<td>(25.7)</td>
<td>6</td>
</tr>
<tr>
<td>Resistant</td>
<td>(20.4)</td>
<td>8</td>
</tr>
<tr>
<td>Susceptible</td>
<td>(29.4)</td>
<td>7</td>
</tr>
<tr>
<td>Intermediate</td>
<td>(10.7)</td>
<td>–</td>
</tr>
<tr>
<td>Resistant</td>
<td>(59.9)</td>
<td>24</td>
</tr>
</tbody>
</table>

Note: The table shows the percentage of susceptibility and resistance for various antibiotics against E. coli and K. pneumoniae.
<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>E. coli (n=272)</th>
<th>K. pneumoniae (n=47)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>7 (8.9)</td>
<td>4 (26.7)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>2 (2.5)</td>
<td>2 (13.3)</td>
</tr>
<tr>
<td>Resistant</td>
<td>70 (88.6)</td>
<td>9 (60.0)</td>
</tr>
<tr>
<td>Tigecycline</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>180 (100.0)</td>
<td>26 (83.9)</td>
</tr>
<tr>
<td>Intermediate</td>
<td>- (0.0)</td>
<td>3 (9.7)</td>
</tr>
<tr>
<td>Resistant</td>
<td>- (0.0)</td>
<td>2 (6.5)</td>
</tr>
<tr>
<td>Colistin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>6 (100.0)</td>
<td>.</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim-sulfamethoxazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Susceptible</td>
<td>136 (50.2)</td>
<td>11 (23.4)</td>
</tr>
<tr>
<td>Intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistant</td>
<td>135 (49.8)</td>
<td>36 (76.6)</td>
</tr>
</tbody>
</table>

최종분석대상자들의 감염 균주 및 항생제 치료유형에 따른 사용현황을 분석하였다. 경험적 요법으로 가장 많이 투약된 항생제는 cephalosporins계 ceftriaxone이었다 (42.0%). 확정적 요법으로는 카바페넴계 항생제가 전체 대상자의 78.4%로 매우 높은 사용을 보였다(표 35).
표 35. 요로감염 대상자에서 치료유형에 따른 항생제 사용현황

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Empirical therapy (n=319)</th>
<th>Definitive therapy (n=319)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carapenems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL/BLIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pip/tazo</td>
<td>29 (9.1)</td>
<td>13 (4.1)</td>
</tr>
<tr>
<td>Amp/sul</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amox/Clav</td>
<td>1 (0.3)</td>
<td></td>
</tr>
<tr>
<td>Ticar/Clav</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cefepime</td>
<td>11 (3.5)</td>
<td>5 (1.6)</td>
</tr>
<tr>
<td>Ceftriazone</td>
<td>134 (42.0)</td>
<td>14 (4.4)</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>2 (0.6)</td>
<td>3 (0.9)</td>
</tr>
<tr>
<td>Amikacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tobramycin</td>
<td>2 (0.6)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cip/Lev</td>
<td>64 (20.1)</td>
<td>21 (6.6)</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tigecycline</td>
<td>1 (0.3)</td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>Colistin</td>
<td></td>
<td>1 (0.3)</td>
</tr>
<tr>
<td>TMP/SMX</td>
<td>17 (5.3)</td>
<td>7 (2.2)</td>
</tr>
<tr>
<td>Others</td>
<td>7 (2.2)</td>
<td>2 (0.6)</td>
</tr>
</tbody>
</table>

경험적 요법의 항생제 사용 종류에 따른 확정적 요법의 항생제 사용을 교차표로 제시하였다(표 36). 경험적 요법으로 카바페넴을 사용한 후 확정적 요법으로 카바페넴을 사용한 환자는 총 49명이었고, 경험적 요법으로 비카바페넴을 사용한 후 확정적 요법으로 카바페넴을 사용한 환자는 총 201명이었다(49명 vs 201명). 이들 중 적절하게 항생제를 사용한 대상자에서 감수성이 있는 경우 경험적 요법시 카바페넴 사용여부에 따라 임상적 성과를 비교 분석하였다.

확정적 요법으로 카바페넴을 사용하고 경험적 요법도 카바페넴을 사용한 환자는 총 49명이었고, 확정적 요법으로 비카바페넴을 사용하고 경험적치료로 카바페넴을 사용한 환자는 총 3명으로, 확정적 요법시 카바페넴 사용여부에 따른 임상적 성과 비교는 불가능 하였다(49명 vs 3명).
나. 요로감염 환자에서 경험적 요법시 카바페넴과 비카바페넴의 비교

확정적 요법으로 카바페넴을 사용한 250명중 경험적 요법으로 적절하게 항생제를 사용한 76명을 대상(카바페넴 49명, 비카바페넴 27명)으로 카바페넴 사용여부에 따른 임상적 안전성 및 효과성 비교분석을 수행하였다.

카바페넴군과 비카바페넴군의 기본적인 특성을 비교분석 하였다. 카바페넴 사용 유무에 따른 두 군간의 통계적으로 유의한 차이는 많지 않은 것으로 나타났으나, 카바페넴군의 환자 연령의 중앙값이 높고, 복잡성 요로감염에 해당되는 Structural abnormality의 비율이 높은 것으로 나타났다. 성별, 연령, 감염경로, 감염유형, 이전 요로감염력, APACHE 점수, CCI 점수를 통한 성장점수 기준치 이후에는 두 군간 평균의 표준화차이도 10%를 넘는 변수가 없어, 카바페넴군과 비카바페넴군 사이의 기본 특성의 분포가 유사하진 것을 확인하였다(표 37).
표 37. 요로감염 경험적 요법시 카바페넴군과 비카바페넴군의 일반적 특성 및 임상적 특성

<table>
<thead>
<tr>
<th>Demographic data</th>
<th>non-weighted</th>
<th>P-value**</th>
<th>Stabilized PS weighted*</th>
<th>P-value**</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, median (q1-q3)</td>
<td>72(56-76)</td>
<td>0.16</td>
<td>71(55.75)</td>
<td>0.51</td>
</tr>
<tr>
<td>Male</td>
<td>13</td>
<td>0.24</td>
<td>11</td>
<td>0.53</td>
</tr>
<tr>
<td>Pathogen</td>
<td>41 (83.7)</td>
<td>0.15</td>
<td>41 (85.1)</td>
<td>0.20</td>
</tr>
<tr>
<td>E.coli</td>
<td>8 (16.3)</td>
<td>0.15</td>
<td>8 (15.6)</td>
<td>0.20</td>
</tr>
<tr>
<td>K.pneumoniae</td>
<td>20 (40.8)</td>
<td>0.52</td>
<td>18 (37.6)</td>
<td>0.81</td>
</tr>
<tr>
<td>Acquisition of infection</td>
<td>18 (36.7)</td>
<td>0.77</td>
<td>17 (35.1)</td>
<td>0.70</td>
</tr>
<tr>
<td>Community acquired</td>
<td>11 (22.5)</td>
<td>0.30</td>
<td>13 (28.1)</td>
<td>0.88</td>
</tr>
<tr>
<td>Healthcare associated</td>
<td>14 (28.6)</td>
<td>0.16</td>
<td>14 (33.9)</td>
<td>0.27</td>
</tr>
<tr>
<td>Hospital acquired</td>
<td>14 (28.6)</td>
<td>0.16</td>
<td>14 (33.9)</td>
<td>0.27</td>
</tr>
<tr>
<td>Site of infection</td>
<td>35 (71.4)</td>
<td>0.09</td>
<td>32 (65.7)</td>
<td>0.26</td>
</tr>
<tr>
<td>Ureteritis</td>
<td>18 (36.7)</td>
<td>0.08</td>
<td>17 (35.1)</td>
<td>0.70</td>
</tr>
<tr>
<td>Pyelonephritis</td>
<td>8 (16.3)</td>
<td>0.05</td>
<td>9 (18.2)</td>
<td>0.74</td>
</tr>
<tr>
<td>Type of infection</td>
<td>2 (4.1)</td>
<td>1.00</td>
<td>2 (4.0)</td>
<td>0.89</td>
</tr>
<tr>
<td>Neoplasm</td>
<td>14 (28.6)</td>
<td>0.08</td>
<td>11 (22.5)</td>
<td>0.92</td>
</tr>
<tr>
<td>Ureteritis</td>
<td>16 (32.7)</td>
<td>0.31</td>
<td>14 (29.6)</td>
<td>0.53</td>
</tr>
<tr>
<td>Functional abn</td>
<td>3 (6.1)</td>
<td>1.00</td>
<td>4 (8.7)</td>
<td>0.51</td>
</tr>
<tr>
<td>Nephrolithiasis</td>
<td>8 (16.3)</td>
<td>0.74</td>
<td>9 (18.2)</td>
<td>0.74</td>
</tr>
<tr>
<td>Urinary catheter</td>
<td>4 (8.2)</td>
<td>0.65</td>
<td>5 (10.3)</td>
<td>0.21</td>
</tr>
<tr>
<td>Suppurative</td>
<td>9985(5320-13780)</td>
<td>0.48</td>
<td>10070(5440,14000)</td>
<td>0.86</td>
</tr>
<tr>
<td>Laboratory tests</td>
<td>8760(4480-12900)</td>
<td>0.48</td>
<td>10880(4730,13430)</td>
<td>0.86</td>
</tr>
<tr>
<td>WBC, median (q1-q3)</td>
<td>1.2(0.8-1.4)</td>
<td>0.10</td>
<td>1.1(0.8,1.42)</td>
<td>0.88</td>
</tr>
<tr>
<td>Creatinine, median (q1-q3)</td>
<td>6.845(1.625-18.39)</td>
<td>0.76</td>
<td>7.05(1.82,18.33)</td>
<td>7.54(2.23,19.75)</td>
</tr>
<tr>
<td>CRP, median (q1-q3)</td>
<td>6.452(2.23-14.67)</td>
<td>0.76</td>
<td>7.05(1.82,18.33)</td>
<td>7.54(2.23,19.75)</td>
</tr>
<tr>
<td>Procalcitonin, median (q1-q3)</td>
<td>0.94(0.198-7.93)</td>
<td>0.26</td>
<td>1.35(0.32,8.38)</td>
<td>0.28</td>
</tr>
</tbody>
</table>

Underlying condition & Comorbidity
<table>
<thead>
<tr>
<th></th>
<th>non-weighted</th>
<th>Stabilized PS weighted*</th>
<th>SMD***</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbapenem</td>
<td>non-Carbapenem</td>
<td>Carbapenem</td>
</tr>
<tr>
<td></td>
<td>(n=49)</td>
<td>(n=27)</td>
<td>(n=49)</td>
</tr>
<tr>
<td>Prior UTI</td>
<td>21 (42.9)</td>
<td>6 (22.2)</td>
<td>0.07</td>
</tr>
<tr>
<td>Recent operation Hx</td>
<td>3 (6.1)</td>
<td>4 (14.8)</td>
<td>0.24</td>
</tr>
<tr>
<td>Recent admission Hx</td>
<td>21 (42.9)</td>
<td>10 (37.0)</td>
<td>0.62</td>
</tr>
<tr>
<td>Recent antibiotics use</td>
<td>22 (44.9)</td>
<td>10 (37.0)</td>
<td>0.51</td>
</tr>
<tr>
<td>Liver disease</td>
<td>3 (6.1)</td>
<td>2 (7.4)</td>
<td>1.00</td>
</tr>
<tr>
<td>Cardiovascular disease</td>
<td>4 (8.2)</td>
<td>3 (11.1)</td>
<td>0.69</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>2 (4.1)</td>
<td>2 (7.4)</td>
<td>0.61</td>
</tr>
<tr>
<td>Renal disease</td>
<td>8 (16.3)</td>
<td>7 (25.9)</td>
<td>0.31</td>
</tr>
<tr>
<td>Diabetes</td>
<td>16 (32.7)</td>
<td>9 (33.3)</td>
<td>0.95</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>12 (24.5)</td>
<td>5 (18.5)</td>
<td>0.55</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>3 (6.1)</td>
<td>2 (7.4)</td>
<td>0.83</td>
</tr>
<tr>
<td>Chemo/Radiotherapy</td>
<td>5 (10.2)</td>
<td>6 (22.2)</td>
<td>0.15</td>
</tr>
<tr>
<td>Solid cancer</td>
<td>10 (20.4)</td>
<td>7 (25.9)</td>
<td>0.58</td>
</tr>
<tr>
<td>Definitive setting</td>
<td>8 (16.3)</td>
<td>3 (11.1)</td>
<td>0.74</td>
</tr>
<tr>
<td>Palliative setting</td>
<td>2 (4.1)</td>
<td>4 (14.8)</td>
<td>0.18</td>
</tr>
<tr>
<td>Hematologic disease</td>
<td>3 (6.1)</td>
<td>2 (7.4)</td>
<td>1.00</td>
</tr>
<tr>
<td>Leukemia</td>
<td>1 (2.0)</td>
<td>0 -</td>
<td>1.00</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>2 (4.1)</td>
<td>2 (7.4)</td>
<td>0.61</td>
</tr>
<tr>
<td>Bone marrow transplantation</td>
<td>0</td>
<td>0 -</td>
<td>-</td>
</tr>
<tr>
<td>Solid organ transplantation</td>
<td>1 (2.0)</td>
<td>1 (3.7)</td>
<td>1.00</td>
</tr>
</tbody>
</table>

Scoring system

<table>
<thead>
<tr>
<th></th>
<th>APACHE II, median (q1-q3)</th>
<th>CCI, median (q1-q3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11(8-17)</td>
<td>2.12,2(0-3)</td>
</tr>
<tr>
<td></td>
<td>13(7-16)</td>
<td>2.81,2(1-5)</td>
</tr>
</tbody>
</table>

* PS VARIABLES: sex, age, Acquisition of infection, Site of infection (ureteritis, structed abn), Prior UTI, APACHE score, CCI score

** Chi-square test or Fisher’s exact test for categorical data/Wilcoxon rank-sum test for continuous data

***SMD: Standardized difference of means
카바페넴군과 비카바페넴군을 각 성과지표별로 비교하였다. 재원기간의 중앙값은 카바페넴군 11일, 비카바페넴군 14일로 나타났다. 본 연구의 1차 결과지표에 해당하는 조기 임상적 관해율은 카바페넴군 51.2%, 비카바페넴군 70.37%이었고, 임상적 치료실패의 경우는 카바페넴군 20.41%, 비카바페넴군 11.11%로 나타났다. 7일, 14일, 30일 사망률과 이상반응은 두 군 모두에서 발생건수가 매우 적은 것으로 나타났다. 성향점수 가중치 이후에도 통계적으로 유의한 차이는 없는 것으로 나타났다(표 38).

카바페넴사용에 따른 조기 임상적 관해율의 차이를 알아보기 위하여 단변량 회귀분석을 시행한 결과, 감염병소, 이전 요로감염 여부, 조직학적 질환이 유의한 예측인자로 나타났으며(P<0.1), 교란변수들을 보정한 다변량 분석결과 카바페넴군과 비카바페넴군에서 조기 임상적 관해율은 통계적으로 차이가 없는 것으로 나타났다(OR=1.70, 95% CI 0.50-5.80). IPTW 가중치 단변량 분석에서는 감염경로, 감염병소, 폐 질환이 유의한 예측인자로 나타났으며(P<0.1), 교란변수들을 보정한 다변량 분석결과 카바페넴군과 비카바페넴군에서 조기 임상적 관해율은 통계적으로 유의한 차이가 없는 것으로 나타났다(OR=1.99, 95% CI 0.66-5.94)(표 39).
표 38. 요로감염 경험적 요법시 카바페넴군과 비카바페넴군의 치료결과

<table>
<thead>
<tr>
<th>Variables</th>
<th>non-weighted</th>
<th>Stabilized PS weighted*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Carbapenem (n=49)</td>
<td>non-Carbapenem (n=27)</td>
</tr>
<tr>
<td></td>
<td>event</td>
<td>total</td>
</tr>
<tr>
<td>Length of stay(days), median (q1-q3)</td>
<td>11(9-19)</td>
<td>14(9-23)</td>
</tr>
<tr>
<td>Early Clinical Remission</td>
<td>25</td>
<td>49</td>
</tr>
<tr>
<td>Clinical failure rate*</td>
<td>10</td>
<td>49</td>
</tr>
<tr>
<td>Microbiological outcome***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacteria duration to clear up (hours), median (q1-q3)</td>
<td>135(63, 199)</td>
<td>78(71.5, 88)</td>
</tr>
<tr>
<td>Microbiological failure within 30 days</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>All-cause mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>14 days</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>30 days</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>Attributable mortality</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 days</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>14 days</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>30 days</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drug rash</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Drug fever</td>
<td>1</td>
<td>49</td>
</tr>
<tr>
<td>Seizure</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>Renal toxicity</td>
<td>0</td>
<td>49</td>
</tr>
<tr>
<td>CDAD</td>
<td>0</td>
<td>49</td>
</tr>
</tbody>
</table>

* PS VARIABLES: sex, age, Acquisition of infection, Site of infection (ureteritis, structed abn), Prior UTI, APACHE score, CCI score

** Chi-square test or Fisher's exact test for categorical data/Wilcoxon rank-sum test for continuous data

***요로감염 f/u culture 를 경험적 항생제 5일 이후 시행한 경우

119
표 39. 요로감염 경험적 요법시 카바페넴과 비카바페넴군의 단변량 및 다변량 회귀분석 결과(조기 임상적 관해율)

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analysis</th>
<th>Multivariate analysis</th>
<th>Stabilized PS weight*</th>
<th>Multivariate analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR (95% CI)</td>
<td>P-value</td>
<td>OR (95% CI)</td>
<td>P-value</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>non-carbapenem use (ref carbapenem)</td>
<td>2.28 (0.84, 6.18)</td>
<td>0.10</td>
<td>1.70 (0.50, 5.80)</td>
<td>0.40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2.26 (0.81, 6.32)</td>
<td>0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.99 (0.66, 5.94)</td>
<td>0.22</td>
</tr>
<tr>
<td>Demographic data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age, median (q1-q3)</td>
<td>0.99 (0.96, 1.02)</td>
<td>0.37</td>
<td>0.99 (0.95, 1.02)</td>
<td>0.43</td>
</tr>
<tr>
<td>Male</td>
<td>1.44 (1.47, 4.43)</td>
<td>0.52</td>
<td>1.24 (0.35, 4.43)</td>
<td>0.75</td>
</tr>
<tr>
<td></td>
<td>1.66 (1.50, 5.11)</td>
<td>0.40</td>
<td>1.80 (0.51, 6.32)</td>
<td>0.36</td>
</tr>
<tr>
<td>Pathogen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E.coli</td>
<td>1.11 (0.27, 4.53)</td>
<td>0.88</td>
<td>1.18 (0.29, 4.84)</td>
<td>0.82</td>
</tr>
<tr>
<td>K.pneumoniae</td>
<td>0.90 (0.22, 3.65)</td>
<td>0.88</td>
<td>0.85 (0.21, 3.50)</td>
<td>0.82</td>
</tr>
<tr>
<td>Acquisition of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Community acquired</td>
<td>1.05 (0.41, 2.68)</td>
<td>0.92</td>
<td>1.22 (0.47, 3.19)</td>
<td>0.68</td>
</tr>
<tr>
<td>Healthcare associated</td>
<td>0.54 (0.21, 1.40)</td>
<td>0.20</td>
<td>0.32 (0.12, 0.86)</td>
<td>0.02</td>
</tr>
<tr>
<td>Hospital acquired</td>
<td>2.02 (0.68, 6.02)</td>
<td>0.20</td>
<td>3.04 (0.97, 9.59)</td>
<td>0.05</td>
</tr>
<tr>
<td></td>
<td>2.04 (0.50, 8.31)</td>
<td>0.58</td>
<td>2.31 (0.58, 2.70)</td>
<td>0.14</td>
</tr>
<tr>
<td>Site of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ureteritis</td>
<td>0.44 (0.16, 1.19)</td>
<td>0.10</td>
<td>0.37 (0.11, 1.28)</td>
<td>0.12</td>
</tr>
<tr>
<td>Pyelonephritis</td>
<td>2.08 (0.76, 5.65)</td>
<td>0.15</td>
<td>2.23 (0.82, 6.04)</td>
<td>0.11</td>
</tr>
<tr>
<td>Type of infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neoplasm</td>
<td>0.35 (0.03, 4.02)</td>
<td>0.38</td>
<td>0.29 (0.02, 3.92)</td>
<td>0.33</td>
</tr>
<tr>
<td>Ureteritis</td>
<td>1.44 (0.47, 4.43)</td>
<td>0.52</td>
<td>2.02 (0.62, 6.60)</td>
<td>0.23</td>
</tr>
<tr>
<td>Functional abn</td>
<td>1.52 (0.58, 3.97)</td>
<td>0.39</td>
<td>1.36 (0.49, 3.72)</td>
<td>0.55</td>
</tr>
<tr>
<td>Nephrolithiasis</td>
<td>2.27 (0.23, 22.87)</td>
<td>0.46</td>
<td>5.13 (0.38, 68.66)</td>
<td>0.14</td>
</tr>
<tr>
<td>Urinary catheter</td>
<td>0.85 (0.24, 3.08)</td>
<td>0.81</td>
<td>0.50 (0.15, 1.69)</td>
<td>0.26</td>
</tr>
<tr>
<td>Suppurative</td>
<td>1.10 (0.17, 6.98)</td>
<td>0.92</td>
<td>1.40 (0.22, 8.74)</td>
<td>0.72</td>
</tr>
<tr>
<td>Underlying condition & Comorbidity</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Priro UTI</td>
<td>0.43 (0.16, 1.11)</td>
<td>0.08</td>
<td>0.61 (0.20, 1.89)</td>
<td>0.39</td>
</tr>
<tr>
<td>Recent operation Hx</td>
<td>0.97 (0.20, 4.65)</td>
<td>0.97</td>
<td>0.73 (0.15, 3.60)</td>
<td>0.70</td>
</tr>
<tr>
<td>Recent admission Hx</td>
<td>0.65 (0.26, 1.64)</td>
<td>0.36</td>
<td>0.68 (0.26, 1.76)</td>
<td>0.42</td>
</tr>
</tbody>
</table>
Variables

<table>
<thead>
<tr>
<th>Variables</th>
<th>Univariate analysis</th>
<th>Stabilized PS weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>(95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recent antibiotics use</td>
<td>0.71</td>
<td>0.28</td>
</tr>
<tr>
<td>Liver disease</td>
<td>0.97</td>
<td>0.20</td>
</tr>
<tr>
<td>Pulmonary disease</td>
<td>0.71</td>
<td>0.10</td>
</tr>
<tr>
<td>Renal disease</td>
<td>0.57</td>
<td>0.18</td>
</tr>
<tr>
<td>Diabetes</td>
<td>0.55</td>
<td>0.21</td>
</tr>
<tr>
<td>Neurologic disease</td>
<td>2.02</td>
<td>0.63</td>
</tr>
<tr>
<td>Connective tissue disease</td>
<td>0.16</td>
<td>0.02</td>
</tr>
<tr>
<td>Chemo/Radiotherapy</td>
<td>1.32</td>
<td>0.35</td>
</tr>
<tr>
<td>Solid cancer</td>
<td>2.02</td>
<td>0.63</td>
</tr>
<tr>
<td>Hematologic disease</td>
<td>3.10</td>
<td>0.33</td>
</tr>
</tbody>
</table>

Scoring system

<table>
<thead>
<tr>
<th>Scoring system</th>
<th>Univariate analysis</th>
<th>Stabilized PS weight*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OR</td>
<td>(95% CI)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>APACHE II, median (q1-q3)</td>
<td>0.98</td>
<td>0.92</td>
</tr>
<tr>
<td>CCI, median (q1-q3)</td>
<td>1.12</td>
<td>0.89</td>
</tr>
</tbody>
</table>

* PS VARIABLES: sex, age, Acquisition of infection, Site of infection (ureteritis, structed abn), Prior UTI, APACHE score, CCI score
고찰

1. 연구결과 요약

1.1. 균혈증

ESBL 생성 장내세균에 의한 균혈증 환자에서 카바페넴 치료와 대안항생제 치료간의 임상적 안전성 및 효과성을 검토한 체계적 문헌고찰의 주요결과는 카바페넴이 ESBL 생성 장내세균에 의한 균혈증 환자의 경험적 치료제로서의 우월성을 입증하지 못하였으나, 확정적 요법으로 사용한 연구에서는 비교 약제에 따라 전체 사망 위험의 감소와 유의한 연관을 보였다는 것이다. 또한 가장 적절한 대안제로 사용할 수 있는 항생제는 경험적 요법과 확정적 요법 모두 BL/BLIs 계열인 것으로 나타났다.

경험적 요법에 대한 분석 결과, 카바페넴군은 비카바페넴군에 비해 전체 사망 위험을 감소시키는 경향을 보였으나 유의미한 차이는 아니었다. 이러한 경향성은 약제비교 설계 연구들에서 크게 나타났으며 약제 사용의 적절성을 확인할 수 있는 문헌들을 통합한 하위군 분석 결과에서 유사한 결과를 보였다. 의미있는 결과는 적절한 약제를 사용한 문헌들 중 약제비교 설계로 연구된 두 편 연구의 통합분석 결과로, 동 분석에서 카바페넴군은 비카바페넴군에 비해 전체 사망 위험을 통계적으로 유의미하게 감소시키는 것으로 나타났다. 그러나 이 결과는 두 편이라는 문헌수의 한계도 있고 두 문헌 간 통계적 이질성의 근거도 나타나므로(okers=57%), 약제 사용 이외에 결과지표에 영향을 미칠 만한 교란변수들을 적절히 통제한 추가 연구들로는 다시 확인되어야 한다.

카바페넴군과 BL/BLIs군간 사망 위험과 관련하여서는 두 군 간 유의한 차이뿐만 아니라 어떠한 경향성도 나타나지 않은 반면, non-BL/BLIs 군과의 비교에서는 유의한 차이를 나타내었으나 카바페넴군에서 전체 사망 위험이 낮아지는 경향성을 보였다. Non-BL/BLIs의 비교를 cephalosporine 계열, aminoglycoside 계열, quinolones 계열로 나누어 분석한 결과, 세 분석 모두에서 통계적으로 유의한 차이는 없었다. 동 분
석들 중 카바페넴의 사망 위험 감소 관련성이 가장 크게 나타난 것은 cephalosporines 계열의 비교였으며, 이 비교에 포함된 한 편의 약제비교 설계 문헌에서 카바페넴군의 사망 위험이 유의하게 더 났었다.

확정적 요법에 대한 분석 결과, 카바페넴군은 비카바페넴군에 비해 전체 사망 위험이 낮은 경향을 보였으나 통계적으로 유의한 차이는 아니었다. BL/BLIs군과의 비교에서도 카바페넴군에서 전체 사망 위험이 낮은 경향이 관찰되었으나 이 역시 유의한 차이는 아니었다. 반면 Non-BL/BLIs 군과의 비교에서는 카바페넴 치료가 전체 사망 위험을 유의하게 낮추는 것으로 나타났으며, 이 결과는 다른 분석의 약제비교 설계 연구들의 통합결과에서도 동일하였다. Non-BL/BLIs 외의 비교를 cephalosporines 계열, aminoglycoside 계열, quinolones 계열별로 나누어 분석한 결과, cephalosporines 군과의 비교에서만 카바페넴군의 전체 사망률이 유의하게 낮았다. Non-BL/BLIs군과의 비교에서 cephalosporines 사용군을 통제하고 실시한 민감도 분석에서는 두 군간 전체 사망률에서 유의한 차이가 사라지는 것으로 나타났다. 비카바페넴군과의 비교에서도 cephalosporines 사용군을 통제하는 경우 기본 분석보다 카바페넴군의 사망 위험 감소 경향성이 줄어드는 것으로 나타나 비카바페넴군에서 cephalosporines의 사용이 동 분석의 결과에 크게 영향을 미쳤음을 확인 할 수 있었다.

2010년 1월 1일~2014년 12월 31일(5개년도) 사이에 혈액 미생물 배양 검사에서 ESBL 생성 E. coli 또는 K. pneumoniae 양성으로 판정된 균혈증 입원환자를 대상으로 항생제 사용 및 미생물검사 현황을 조사하고, 카바페넴과 대안 항생제 요법(비카바페넴), BL/BLIs간 임상적 안전성 및 효과성을 비교 분석하였다.

본 연구의 선정제외 기준에 부합하는 최종 분석 대상자는 총 554명이었으며 이들의 항생제 감수성 결과를 확인한 결과 카바페넴에서의 감수성이 95% 이상으로 가장 높았으며, BL/BLIs(piperacillin-tazobactam)도 83.6%로 높은 감수성을 보였다. 경험적 요법으로 가장 많이 투약된 항생제는 카바페넴이었으며(35.9%) 이중 meropenem을 투여받은 환자가 126명으로 가장 많았다.

확정적 요법으로 카바페넴을 사용한 468명 중 경험적 요법에서 약제감수성 결과에 따라 적절한 항생제로 치료받은 232명(카바페넴 183명 vs 비카바페넴 49명)을 대상으로 카바페넴 사용여부에 따른 임상 성과를 비교분석하였다. 포함환자의 기저특성 중 48시간 이전 증상지자실 입실 또는 전실, WBC, 폐 질환 APACHE II 점수 등의 변수에서 카바페넴군과 비카바페넴군간 통계적으로 유의한 차이가 나타났으며, 임상적으로 치료결과에
영향을 미칠 것으로 예상되는 변수인 감염경로, 감염병소 등에서도 통계적으로 유의하지 않지만 두 군간 분포의 차이가 있는 것으로 확인되었다. 성향점수 가중치 이후에는 두 군간 통계적으로 유의한 차이가 나타나는 변수는 없었으며 표준화된 평균차를 통해 확인한 두 군간 분포 역시 유사해지는 것을 확인하였다. 30일 생존율의 생존분석 결과, 성향점수 가중치 투영 후 모두에서 카바페넴군과 비카바페넴군간 유의한 차이는 없는 것으로 나타났다. 연령, 감염경로, 48시간 이내 증상발현일자, 입실 또는 전실, 감염병소, APACHE II, 간 질환, 폐 질환, 신 질환, 당뇨 등 사망에 영향을 미칠 수 있는 주요 교란변수들을 보정한 다변량 분석결과에서도 카바페넴 사용에 따른 30일 사망률에는 유의한 차이가 나타나지 않았다(HR=1.01, 95%CI 0.27-3.76). 성향점수 가중치 보정 후에도 두 군간 통계적으로 유의한 차이는 없었다(HR=0.76, 95%CI 0.23-2.58).

확정적 요법으로 카바페넴을 사용한 256명 중 적절한 치료로 분류되는 224명(카바페넴 183명 vs BL/BLIs 41명)을 대상으로 경험적 요법에서 카바페넴 사용여부에 따른 임상적 안전성 및 효과성 비교분석을 수행하였다. 카바페넴군과 BL/BLIs군간 기저특성변수 중 감염경로, 고혈압(완화치료), APACHE II 점수에서 통계적으로 유의한 차이가 나타났으며, 임상적으로 치료결과에 영향을 미칠 것으로 예상되는 감염병소 등의 변수에서도 두 군간 분포에 유의한 차이가 있는 것으로 나타났다. 성향점수 가중치 보정 이후에는 두 군간 통계적으로 유의한 차이를 보이는 변수가 없었으며 표준화된 평균차를 통해 확인한 두 군간 분포 역시 유사해지는 것을 확인하였다. 30일 생존율의 생존분석 결과 성향점수 가중치 투영 후 모두에서 카바페넴군과 BL/BLIs군간 유의한 차이가 없었다. 감염경로, 48시간 이내 증상발현일자, 입실일자, 감염병소, APACHE II, 간 질환, 폐 질환, 신 질환, 당뇨 등 사망에 영향을 미칠 수 있는 주요 교란변수들을 보정한 다변량 분석결과에서도 카바페넴 사용 여부에 따른 30일 사망률에는 유의한 차이가 없는 것으로 나타났다(HR=1.10, 95% CI 0.30-4.09). 성향점수 가중치 보정 이후에도 두 군간 통계적으로 유의한 차이는 나타나지 않았다(weighted HR= 0.99, 95% CI 0.29-3.30).

1.2. 요로감염

ESBL 생성 장내세균에 의한 요로감염 환자에서 카바페넴과 다른 항생제 대안치료법간 임상적 안전성 및 효과성 검토한 체계적 문헌고찰의 결과, 카바페넴 사용의 효과성에 대해 명확히 결론내릴 만한 근거가 부족하였다. 이러한 결과는 현재까지의 연구 근거가 약물 치료방법(경험적 요법, 확정적 요법)이 혼재되어 있고, 치료 방법에 따른 합성 가능성 문헌이 1~2편에 불과하여 근거가 매우 부족한 상황으로 확인되었기 때문이다.
전반적인 분석결과 미생물학적 치료 성공률은 카바페넴군과 비카바페넴군간 유의미한 차이가 없었다. 임상적 치료 성공률은 카바페넴군이 효과적인 경향을 보였으나 유의한 차이는 아니었고 치료방법이 혼재된 2편의 연구에서 카바페넴군이 유의하게 높은 것으로 나타났으나, 2편의 문헌에서 기술된 임상적 치료의 조작적 정의가 상이하고 문헌 수도 적어 이를 토대로 결론을 내리는 것은 어려웠다.

2011년 1월 1일~2014년 12월 31일(4개년도) 사이에 소변 미생물 배양 검사에서 ESBL 생성 E. coli 또는 K. pneumoniae 양성으로 판정된 상부요로감염(요관염, 신우신염) 입원환자를 대상으로 항생제 사용 및 미생물 검사 현황을 조사하여 카바페넴과 대안 항생제 요법(비카바페넴)간 임상적 안전성 및 효과성을 비교 분석하였다.

본 연구의 선정체외 기준에 부합하는 최종 분석 대상자는 총 319명이었다. 이들의 항생제 감수성 결과를 확인한 결과, 카바페넴계열 항생제(ertapenem, imipenem, meropenem)에서는 모두 90%이상의 높은 감수성을 보였다. 카바페넴계 이외의 항생제 중에서는 tigecycline, amikacin, piperacillin-tazobactam 등에서 비교적 높은 감수성을 보였다.

확정적 요법으로 카바페넴을 사용한 250명 중 경험적 요법에서 감수성에 따른 적절한 항생제로 치료받은 76명(카바페넴 49명 vs 비카바페넴 27명)을 대상으로 카바페넴 사용 여부에 따른 임상적 안전성 및 효과성에 대한 비교분석을 수행하였다. 포함환자의 기저 특성 중 두 군간 통계적으로 유의한 차이를 나타낸 변수는 감염병소 크레아틴, Structural abnormality 등이었다. 성향점수 가중치 보정 이후에는 두 군간 통계적으로 유의한 차이가 나타나는 변수는 없었으며 표준화된 평균치를 통해 확인한 두 군간 분포 역시 유사해진 것을 확인할 수 있었다. 조기 임상적 관해율에 대하여 교란요인에 해당 되는 성별, 연령, 감염병소, 이전 요로감염 여부, 조직학적 절환 등을 보정한 다변량 회귀분석 결과 카바페넴 사용에 따른 차이는 없는 것으로 나타났다(OR=1.70, 95% CI 0.50-5.80), 성향점수 가중치 보정 후에도 두 군간 통계적으로 유의한 차이는 없는 것으로 나타났다(OR=1.99, 95% CI 0.66-5.94).

2. 연구의 의의

본 연구의 의의는 크게 세 가지이다. 첫째, ESBL 생성 장내세균에 의한 균혈증 및 요로감염 환자에서 항생제 치료범간의 임상적 안전성 및 효과성에 대해 체계적으로 최신의
근거를 고찰하여 제시한다는 점이다. 둘째, 국내 다기관 환자자료를 바탕으로 ESBL 생성 장내세균에 의한 균혈증 및 상부 요로감염 환자의 균주 및 항생체 치료법 현황 자료를 최초로 제공한다는 점이다. 셋째, 국내 ESBL 생성 장내세균에 의한 균혈증 및 상부 요로 감염 환자 대상으로 경제적 요법에서의 카바페넴과 기타항생체 치료범간의 임상 성과를 비교분석하여 우리나라 실정을 반영한 진강성과에 대한 정보를 제시한다는 점이다.

체계적 문헌고찰의 경우, ESBL 생성 장내세균에 의한 균혈증 및 요로감염 환자에서의 항생체 치료법간의 비교분석을 최신 근거까지 활용하여 포괄적으로 평가하였는데 가장 큰 의의가 있다. 기존에 출판된 선행 체계적 문헌고찰은 ESBL 생성 장내세균에 의한 균혈증 환자에서 발생제 요법간의 임상적 효과성을 비교분석하였으나 2012년에 출판되어 최근들어 약제비교 설계로 연구된 연구 성과를 반영하지 못하고 있다. 우리 체계적 문헌고찰에서는 현재까지의 연구특성을 파악하여 코호트 연구설계로 구분되나 본 연구결론에 담하기 위해 수행한 항생제 효과 비교를 위한 문헌과 그렇지 않은 문헌들을 나누어 통합 분석을 시행하였다. 따라서 본 연구는 항생제 치료법간의 임상 효과를 비교한 관찰연구와 그렇지 않고 위험 요인 파악이나 현황 자료 조사 등을 목적으로 출판된 연구들이 혼재된 동 연구주제 영역의 특성을 반영하고 이에 따른 효과차이를 구분하여 제시한 최초의 체계적 문헌고찰 및 메타분석 연구이다. 더구나 기존 체계적 문헌고찰에서는 전체 사망률 이외 결과변수에 대한 분석이 미흡하였으나 본 연구에서는 일차결과변수(전체 사망률)이외 이차결과변수로 균혈증 관련 사망이나 치료 관련 부작용 발생에 대해서도 폭넓게 질적 기술 및 양적 합성을 수행하였다.

본 체계적 문헌고찰은 ESBL 생성 장내세균에 의한 균혈증 및 요로감염 환자에서 항생제 치료법간의 효과를 보고하는 연구 현황을 제시할 뿐 아니라 임상적 효과 및 안전성에 대한 통합적인 근거를 제시하여 임상에 유의미한 정보 제공은 물론 향후 연구 설계 시방향성을 구축하는데 도움이 되는 정보를 제공하였는데 의의가 있다.

환자자료 분석의 경우, 국내 ESBL 생성 장내세균에 의한 균혈증 및 요로감염 환자에 대한 환자 특성은 물론 항생제 치료 현황 및 항생제 감수성 자료가 부재하고 향후 항생제 내성의 증가 가능성 등을 고려할 때 ESBL 생성 장내세균 감염 환자에 대한 연구가 활발할 것으로 예상되므로 이에 대한 국내 현황의 기초자료를 제공하였는데 의미가 있다. 또한 일부 병원 자료가 아닌 우리나라 ESBL 생성 장내세균에 의한 균혈증 및 요로 감염 환자에 대한 다기관 자료를 수집하여 분석된 정보를 제공하였다는 점에서 보다 일반화 가능성을 제고하였다고 생각된다.

다기관 국내 환자자료를 바탕으로 후향적 코호트 설계를 통한 ESBL 생성 장내세균에
의한 균혈증 및 상부요로감염 환자의 항생제 치료 성과를 비교한 연구는 국내 유일하다. 또한 경험적 요법과 확정적 요법으로 사용된 카바페넴 대 기타 항생제간의 임상적 효과를 명확히 비교분석하기 위하여 경험적 요법의 항생제 효과는 확정적 요법으로 카바페넴을 사용한 대상에서의 효과를, 확정적 요법에서의 효과는 경험적 요법에서 카바페넴을 사용한 대상에서의 효과를 비교하는 설계를 적용하여 임상 효과 분석에 제한점을 지적되었던 기타 항생제 사용으로 인한 효과 혼합 가능성을 최소화하였는데 의미가 있다.

3. 연구의 제한점 및 후속연구 제안

본 연구는 ESBL 생성 장내세균에 의한 균혈증 및 요로감염 환자에서 항생제 치료법간의 임상적 안전성 및 효과성에 대해 체계적 문헌고찰을 시행하였으며, 국내 4개 병원의 환자 자료를 이용하여 ESBL 생성 장내세균에 의한 균혈증 및 상부요로감염 환자의 현황, 항생제 치료 현황, 감수성 현황 및 치료 성과를 제시하였다. 하지만 연구수행 및 결과 해석에 있어 몇 가지 한계점을 가지며 내용은 다음과 같다.

체계적 문헌고찰의 경우, 첫째, 포함된 연구문헌이 모두 관찰연구이므로 명확한 결론을 제시하기보다 관련성에 대한 정보를 제공한다는 제한점이 있다. 현재까지 본 체계적 문헌고찰의 연구 질문문과 관련된 출판된 무작위 배정 임상 시험연구(RCT)는 없으며 2015년에 RCT 프로토콜(Harris 등, 2015; Rosso-Fernandez 등, 2015)이 출판된 상태이므로 명확한 결론을 제시할 수 있는 결과는 대략 2~3년 가량 소요될 전망이다. 관찰연구는 실제 임상 현실을 반영하고 실제적인 대상자로 연구했기 때문에 결과의 외적 타당도가 높아 일반화에 있어 장점을 가지는 반면 무작위 배정이 이루어지지 않았기 때문에 교란변수의 영향을 RCT 연구만으로 해결할 수 없으므로 항생제 효과에 대한 명확한 결론을 내리기 어렵다.

둘째, 본 연구는 ESBL 양성 장내세균 군혈증에서 항생제 요법간의 효과를 검증을 목적으로 설계되지 않았다. 그러므로 측정가능하거나 측정가능하지 않은 교란요인을 조절하지 못하였으므로 결과 해석을 주의하여야 하며 더 확정적인 결론을 내리기 위한 추가 연구가 필요하다. 본 체계적 문헌고찰에서는 이러한 약제 효과 비교 설계 연구와 그렇지 않은 문헌간의 효과 차이를 제시하는 것이 본 연구주제와 관련한 현존하는 출판 문헌들의 설계상의 제한점을 잘 표현하는 것으로 여겨져 기본 본석을 이 비교설계 여부를 바탕으로 구분하여 제시하였다.

셋째, 포함 연구들은 다양한 대상자들로 이루어져 균혈증 원인 균주, 감염 경로, 카바
카바페넴과 기타 대안 항생제에 의한 항생제 사용 여부 및 항생제 사용 용법 등이 다르다. 이러한 요인은 사망 등의 임상 결과에 영향을 미칠 것으로 여겨지지만 문헌들간 보고된 자료가 일관되지 않아 이질성에 대한 요인탐색이나 임상적으로 의미있는 그룹에 대한 민감도 분석을 수행하지 못하였다. 또한, 경험적 요법과 확정적 요법에 대한 기술이 문헌상에는 명확치 않은 경우가 있었으나 선행 체계적 문헌고찰(2012)의 구분을 바탕으로 유사한 기준에 구분하였으며 이 부분의 불확실성이 존재한다. 연구문헌들간 다양한 대상과 증례법, 감수성의 차이 등은 동 연구주제에 대한 통계적 이질성의 원인으로 고려되어 본 연구의 메타분석은 보수적 접근법인 변량효과모형을 기반으로 수행하였다.

요로감염의 경우 최근들어 여러 관찰연구의 문헌이 출판되고 있으며 카바페넴 이외 대안 항생제에 대한 효과를 검증하기 위한 노력이 이루어지고 있다. 본 체계적 문헌고찰은 이후의 추가 연구문헌이 축적되어 근거통합 연구가 다시 수행될 필요가 있으며 복합성 및 단순성 요로감염, 원인 균주, 경험적 및 확정적 항생제 요법 등의 구분된 효과 규명이 이루어질 필요가 있다.

환자자료 분석의 경우, 첫째, 확정적 요법에서 카바페넴 사용에 따른 결과를 비교하기에 연구대상자의 수가 부족하였다. 균혈증 환자에서 확정적 요법으로 카바페넴 계열을 사용하고 경험적 요법도 카바페넴을 사용한 환자는 총 191명이었고, 확정적 요법으로 비카바페넴 계열을 사용하고 경험적 치료로 카바페넴을 사용한 환자는 총 6명으로, 확정적 요법시 카바페넴 사용여부에 따른 임상적 성과 비교는 불가능하였다(191명 vs 6명). 또한 경험적 요법에서도 치료결과에 영향을 미치는 것으로 알려진 감염획득경로, 균주, 중증도 등에 대한 하위통계 분석이 불가능하였다. 요로감염분석에서도 확정적 요법으로 카바페넴계열을 사용하고 경험적 요법도 카바페넴을 사용한 환자는 총 49명이었고, 확정적 요법으로 비카바페넴계열을 사용하고 경험적 치료로 카바페넴을 사용한 환자는 총 3명으로, 확정적 요법시 카바페넴 사용여부에 따른 임상성과 비교는 불가능하였다(49명 vs 3명).

둘째, 본 연구는 두 군간의 비교가능성을 확보하기 위하여 감수성에 따라 적절한 항생제가 48시간 이상 투여되지 않은 환자를 제외하였다. 그 결과 균혈증 초기에 사망한 환자가 많아 일부의 가능성이 제외되었다.

셋째, 임상현장에서 환자의 중증도에 따라 카바페넴과의 외 항생제를 처방하고 있어 대상군간의 기저특성에 차이가 있는 것으로 나타났다. 본 연구의 비교 대상자 수가 적어 통계적으로 유의한 차이를 보이는 변수는 많지 않았으나, 임상적으로 중요한 감염경로, APACHE II 점수 등에서 두 군간 분포가 다르다는 것을 확인하였다. 따라서 본 연구에서는 기본 환자자료 분석과 표준화된 역학을 가중치를 계산하여 성향점수로 두 군간의
분포를 맞춘 분석 두 가지를 모두 수행하였다.
체계적 문헌고찰을 통해 확인한 결과 ESBL 생성 균혈증 환자에서 카바페넴과 비카바페넴군의 효과를 비교하기 위하여 설계된 문헌은 매우 적었으며, 대부분의 문헌이 ESBL 생성 균혈증에서의 위험요인을 확인하는 연구인 것으로 분석되었다. 본 국내 환자자료 분석 결과는 Kang 등(2012)이 카바페넴과 BL/BLIs를 비교한 결과(OR=0.55, 95% CI 0.16–.88) 및 Rodriguez-bano 등(2012)이 6개의 전향적 연구를 통합하여 분석한 결과와 유사하게 카바페넴 사용에 따른 사망률의 차이는 없는 것으로 나타났으나, 2015년 새롭게 발표된 Tamma 등(2015)에 따르면 카바페넴이 BL/BLIs (piperacillin-tazobactam)에 비하여 통계적으로 유의하게 사망률을 감소시키는 것으로 나타났(Adjusted HR=1.92, CI 1.07–3.15), 명확한 결론을 제시할 수 있는 전향적 무작위 대조군 임상시험연구의 수행이 필요할 것으로 판단된다.

4. 결론 및 제언
본 연구결과 ESBL 양성 장내세균 균혈증 환자에서 경험적 요법으로 카바페넴이 우월하다는 근거는 명확히 확인되지 않았으며, 확정적 요법으로는 non-BL/BLIs(특히 cephalosporines)에 비해 카바페넴 사용이 전례 사망 위험 감소와 관련이 있을 수 있는 것으로 나타났다. 증가하는 카바페넴 내성에 대한 우려와, 체계적 문헌 고찰 및 후향적 코호트 연구에서 BL/BLIs 제제가 카바페넴에 비해 비열등성을 보인 점을 고려하였을 때, BL/BLIs 제제가 ESBL 양성 장내세균 균혈증 치료의 적절한 대안제로 사용될 수 있을 것으로 생각된다. 다만, ESBL 양성 균혈증에서 BL/BLIs 제제와 비교하여 확정적 요법으로 사용되는 카바페넴의 효과는 잘 설계된 무작위 대조임상에 의해 확증되어야 한다. ESBL 양성 장내세균 요로감염 환자에서는 경험적 요법과 확정적 요법에 대한 카바페넴과 기타 항생제 치료범위의 임상 효과를 검증하는 추가 비교임상연구가 필요하다.
ESBL 양성 장내세균에 의한 균혈증 및 요로감염 질환에서 경험적 요법의 항생제 선택은 환자 과거력, 항생제 치료력, 질환 중증도, 감염 일차병소 및 약제 감수성 결과 등을 고려하여 주의 깊게 이루어져야 한다.
참고문헌

김수영 등. 임상연구문헌 분류도구 및 비무작위 연구의 비돌림 위험 평가도구. 건강보험심사평가원. 2013.

장은진, 안정훈, 정신영, 황진섭, 이자연, 심정림. 측정된 교란요인을 고려한 성과분석 방법. 한국보건의료연구원. 2013.

정두련. 임상진단 요로감염 및 균혈증에 기준한 주요 감염병 원인균의 항생제 내성 실태. 질병관리본부. 2013.

CLSI. Performance standards for antimicrobial susceptibility testing; Twenty-Second informational supplement. CLSI document M100-S22. Clinical and Laboratory Standards Institute, Wayne, PA. 2012

Kaniga K, Flamm R, Tong SY, Lee M, Friedland I, Redman R. Worldwide experience with the use of doripenem against extended-spectrum-beta-lactamase-producing and ciprofloxacin-resistant Enterobacteriaceae: analysis of six phase 3 clinical

부록

1. 균혈증

1.1. 문헌 검색전략

가. 국외 데이터베이스

1) Ovid MEDLINE(R) In–Process & Other Non–Indexed Citations and Ovid MEDLINE(R) 1946 to Present

검색일: 2015.4.13

<table>
<thead>
<tr>
<th>번호</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>exp Sepsis/ or exp Bacteremia/</td>
<td>95,272</td>
</tr>
<tr>
<td>2</td>
<td>(sepsis or septic* or bacter?emia or Blood stream infect*i or shock syndrome or SIRS or MODS).mp.</td>
<td>159,290</td>
</tr>
<tr>
<td>3</td>
<td>Systemic Inflammatory Response Syndrome.mp. or exp Systemic Inflammatory Response Syndrome/</td>
<td>99,655</td>
</tr>
<tr>
<td>4</td>
<td>(multiple organ dysfunction syndrome or multiorgan dysfunction* or multi–organ dysfunction*).mp.</td>
<td>2,617</td>
</tr>
<tr>
<td>5</td>
<td>(multiple organ failure* or multiorgan failure* or multi–organ failure*).mp.</td>
<td>15,519</td>
</tr>
<tr>
<td>6</td>
<td>1 or 2 or 3 or 4 or 5</td>
<td>186,657</td>
</tr>
<tr>
<td>7</td>
<td>exp Carbapenems/ or Carbapenem*.mp.</td>
<td>11,587</td>
</tr>
<tr>
<td>8</td>
<td>(Meropenem* or Ertapenem* or Doripenem* or Biapenem* or Imipenem* or Panipenem*).mp.</td>
<td>11,754</td>
</tr>
<tr>
<td>9</td>
<td>7 or 8</td>
<td>16,605</td>
</tr>
<tr>
<td>10</td>
<td>6 and 9</td>
<td>2,141</td>
</tr>
<tr>
<td>11</td>
<td>Meta–Analysis as Topic/</td>
<td>14,109</td>
</tr>
<tr>
<td>12</td>
<td>meta analy$.tw.</td>
<td>73,697</td>
</tr>
<tr>
<td>13</td>
<td>metaanaly$.tw.</td>
<td>1,433</td>
</tr>
<tr>
<td>14</td>
<td>Meta–Analysis/</td>
<td>54,707</td>
</tr>
<tr>
<td>15</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
<td>63,785</td>
</tr>
<tr>
<td>16</td>
<td>exp Review Literature as Topic/</td>
<td>7,907</td>
</tr>
<tr>
<td>17</td>
<td>or/11–16</td>
<td>140,302</td>
</tr>
<tr>
<td>18</td>
<td>cochrane.ab</td>
<td>35,181</td>
</tr>
<tr>
<td>19</td>
<td>embase.ab</td>
<td>34,863</td>
</tr>
<tr>
<td>20</td>
<td>(psychlit or psyclit).ab</td>
<td>882</td>
</tr>
<tr>
<td>연번</td>
<td>검색어</td>
<td>검색결과</td>
</tr>
<tr>
<td>------</td>
<td>--------</td>
<td>----------</td>
</tr>
<tr>
<td>21</td>
<td>(psychinfoorpsycinfo).ab.</td>
<td>9,029</td>
</tr>
<tr>
<td>22</td>
<td>(cinahlorcinhal).ab.</td>
<td>11,861</td>
</tr>
<tr>
<td>23</td>
<td>science citation index.ab.</td>
<td>2,147</td>
</tr>
<tr>
<td>24</td>
<td>bids.ab.</td>
<td>369</td>
</tr>
<tr>
<td>25</td>
<td>cancerlit.ab.</td>
<td>591</td>
</tr>
<tr>
<td>26</td>
<td>or/18–25</td>
<td>56,024</td>
</tr>
<tr>
<td>27</td>
<td>reference list$.ab.</td>
<td>10,779</td>
</tr>
<tr>
<td>28</td>
<td>bibliograph$.ab.</td>
<td>12,375</td>
</tr>
<tr>
<td>29</td>
<td>hand–search$.ab.</td>
<td>4,324</td>
</tr>
<tr>
<td>30</td>
<td>relevant journals.ab.</td>
<td>778</td>
</tr>
<tr>
<td>31</td>
<td>manual search$.ab.</td>
<td>2,628</td>
</tr>
<tr>
<td>32</td>
<td>or/27–31</td>
<td>27,672</td>
</tr>
<tr>
<td>33</td>
<td>selection criteria.ab.</td>
<td>21,152</td>
</tr>
<tr>
<td>34</td>
<td>data extraction.ab.</td>
<td>10,870</td>
</tr>
<tr>
<td>35</td>
<td>33 or 34</td>
<td>30,334</td>
</tr>
<tr>
<td>36</td>
<td>Review/</td>
<td>1,960,789</td>
</tr>
<tr>
<td>37</td>
<td>35 and 36</td>
<td>19,951</td>
</tr>
<tr>
<td>38</td>
<td>Comment/</td>
<td>620,629</td>
</tr>
<tr>
<td>39</td>
<td>Letter/</td>
<td>871,768</td>
</tr>
<tr>
<td>40</td>
<td>Editorial/</td>
<td>374,289</td>
</tr>
<tr>
<td>41</td>
<td>animal/</td>
<td>5,438,838</td>
</tr>
<tr>
<td>42</td>
<td>human/</td>
<td>13,834,016</td>
</tr>
<tr>
<td>43</td>
<td>41 not (41 and 42)</td>
<td>3,926,996</td>
</tr>
<tr>
<td>44</td>
<td>or/38–40,43</td>
<td>5,267,964</td>
</tr>
<tr>
<td>45</td>
<td>17 or 26 or 32 or 37</td>
<td>170,241</td>
</tr>
<tr>
<td>46</td>
<td>45 not 44</td>
<td>159,906</td>
</tr>
<tr>
<td>47</td>
<td>Randomized Controlled Trials as Topic/</td>
<td>96,826</td>
</tr>
<tr>
<td>48</td>
<td>randomized controlled trial/</td>
<td>391,171</td>
</tr>
<tr>
<td>49</td>
<td>Random Allocation/</td>
<td>82,800</td>
</tr>
<tr>
<td>50</td>
<td>Double Blind Method/</td>
<td>129,370</td>
</tr>
<tr>
<td>51</td>
<td>Single Blind Method/</td>
<td>20,204</td>
</tr>
<tr>
<td>52</td>
<td>clinical trial/</td>
<td>492,715</td>
</tr>
<tr>
<td>53</td>
<td>clinical trial, phase i.pt.</td>
<td>14,975</td>
</tr>
<tr>
<td>54</td>
<td>clinical trial, phase ii.pt.</td>
<td>24,113</td>
</tr>
<tr>
<td>55</td>
<td>clinical trial, phase iii.pt.</td>
<td>9,835</td>
</tr>
<tr>
<td>56</td>
<td>clinical trial, phase iv.pt.</td>
<td>1,006</td>
</tr>
<tr>
<td>57</td>
<td>controlled clinical trial.pt.</td>
<td>89,152</td>
</tr>
<tr>
<td>58</td>
<td>randomized controlled trial.pt.</td>
<td>391,171</td>
</tr>
<tr>
<td>59</td>
<td>multicenter study.pt.</td>
<td>183,693</td>
</tr>
<tr>
<td>60</td>
<td>clinical trial.pt.</td>
<td>492,715</td>
</tr>
<tr>
<td>61</td>
<td>exp Clinical Trials as topic/</td>
<td>287,314</td>
</tr>
<tr>
<td>62</td>
<td>or/47–61</td>
<td>1,068,031</td>
</tr>
<tr>
<td>63</td>
<td>(clinical adj trial$).tw.</td>
<td>232,367</td>
</tr>
<tr>
<td>64</td>
<td>((sing$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw.</td>
<td>134,710</td>
</tr>
<tr>
<td>65</td>
<td>PLACEBOS/</td>
<td>32,837</td>
</tr>
<tr>
<td>66</td>
<td>placebo$.tw.</td>
<td>166,181</td>
</tr>
<tr>
<td>67</td>
<td>randomly allocated.tw.</td>
<td>18,307</td>
</tr>
</tbody>
</table>
2) Embase 1974 to 2015 Week 15

검색일: 2015.4.13
<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>7 or 8</td>
<td>49,260</td>
</tr>
<tr>
<td>10</td>
<td>6 and 9</td>
<td>10,227</td>
</tr>
<tr>
<td>11</td>
<td>exp Meta Analysis/</td>
<td>90,953</td>
</tr>
<tr>
<td>12</td>
<td>((meta adj analy$) or metaanalys$).tw.</td>
<td>96,131</td>
</tr>
<tr>
<td>13</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
<td>78,385</td>
</tr>
<tr>
<td>14</td>
<td>11 or 12 or 13</td>
<td>176,662</td>
</tr>
<tr>
<td>15</td>
<td>cancerlit.ab.</td>
<td>657</td>
</tr>
<tr>
<td>16</td>
<td>cochrane.ab.</td>
<td>42,905</td>
</tr>
<tr>
<td>17</td>
<td>embase.ab.</td>
<td>41,787</td>
</tr>
<tr>
<td>18</td>
<td>(psychlit or psyclit).ab.</td>
<td>964</td>
</tr>
<tr>
<td>19</td>
<td>(psychinfo or psycinfo).ab.</td>
<td>10,160</td>
</tr>
<tr>
<td>20</td>
<td>(cinahl or cinhal).ab.</td>
<td>13,166</td>
</tr>
<tr>
<td>21</td>
<td>science citation index.ab.</td>
<td>2,347</td>
</tr>
<tr>
<td>22</td>
<td>bids.ab.</td>
<td>475</td>
</tr>
<tr>
<td>23</td>
<td>or/15–22</td>
<td>67,894</td>
</tr>
<tr>
<td>24</td>
<td>reference lists.ab.</td>
<td>10,873</td>
</tr>
<tr>
<td>25</td>
<td>bibliography$.ab.</td>
<td>15,789</td>
</tr>
<tr>
<td>26</td>
<td>hand–search$.ab.</td>
<td>5,055</td>
</tr>
<tr>
<td>27</td>
<td>manual search$.ab.</td>
<td>3,030</td>
</tr>
<tr>
<td>28</td>
<td>relevant journals.ab.</td>
<td>905</td>
</tr>
<tr>
<td>29</td>
<td>or/24–28</td>
<td>32,119</td>
</tr>
<tr>
<td>30</td>
<td>data extraction.ab.</td>
<td>13,052</td>
</tr>
<tr>
<td>31</td>
<td>selection criteria.ab.</td>
<td>21,403</td>
</tr>
<tr>
<td>32</td>
<td>30 or 31</td>
<td>33,177</td>
</tr>
<tr>
<td>33</td>
<td>review.pt.</td>
<td>2,039,174</td>
</tr>
<tr>
<td>34</td>
<td>32 and 33</td>
<td>2,039,174</td>
</tr>
<tr>
<td>35</td>
<td>letter.pt.</td>
<td>880,061</td>
</tr>
<tr>
<td>36</td>
<td>editorial.pt.</td>
<td>472,461</td>
</tr>
<tr>
<td>37</td>
<td>animal/</td>
<td>1,643,822</td>
</tr>
<tr>
<td>38</td>
<td>human/</td>
<td>15,604,074</td>
</tr>
<tr>
<td>39</td>
<td>37 not (37 and 38)</td>
<td>1,240,115</td>
</tr>
<tr>
<td>40</td>
<td>or/25–36,39</td>
<td>4,590,045</td>
</tr>
<tr>
<td>41</td>
<td>14 or 23 or 29 or 34</td>
<td>214,267</td>
</tr>
<tr>
<td>42</td>
<td>41 not 40</td>
<td>98,447</td>
</tr>
<tr>
<td>43</td>
<td>Clinical trial/</td>
<td>846,286</td>
</tr>
<tr>
<td>44</td>
<td>Randomized controlled trial/</td>
<td>369,003</td>
</tr>
<tr>
<td>45</td>
<td>Randomization/</td>
<td>65,640</td>
</tr>
<tr>
<td>46</td>
<td>Single blind procedure/</td>
<td>19,920</td>
</tr>
<tr>
<td>47</td>
<td>Double blind procedure/</td>
<td>121,773</td>
</tr>
<tr>
<td>48</td>
<td>Crossover procedure/</td>
<td>42,215</td>
</tr>
<tr>
<td>49</td>
<td>Placebo/</td>
<td>266,296</td>
</tr>
<tr>
<td>50</td>
<td>Randomized controlled trial$.tw.</td>
<td>113,560</td>
</tr>
<tr>
<td>51</td>
<td>Rct.tw.</td>
<td>16,534</td>
</tr>
<tr>
<td>52</td>
<td>Random allocation.tw.</td>
<td>1,434</td>
</tr>
<tr>
<td>53</td>
<td>Randomly allocated.tw.</td>
<td>22,230</td>
</tr>
<tr>
<td>54</td>
<td>Allocated randomly.tw.</td>
<td>2,027</td>
</tr>
<tr>
<td>55</td>
<td>(allocated adj2 random).tw.</td>
<td>801</td>
</tr>
<tr>
<td>연번</td>
<td>검색어</td>
<td>검색결과</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>56</td>
<td>Single blind$.tw.</td>
<td>15,779</td>
</tr>
<tr>
<td>57</td>
<td>Double blind$.tw.</td>
<td>155,367</td>
</tr>
<tr>
<td>58</td>
<td>((treble or triple) adj blind$).tw.</td>
<td>460</td>
</tr>
<tr>
<td>59</td>
<td>Placebo$.tw.</td>
<td>216,758</td>
</tr>
<tr>
<td>60</td>
<td>Prospective study/</td>
<td>284,034</td>
</tr>
<tr>
<td>61</td>
<td>or/43–60</td>
<td>1,462,594</td>
</tr>
<tr>
<td>62</td>
<td>Case study/</td>
<td>31,027</td>
</tr>
<tr>
<td>63</td>
<td>Case report.tw.</td>
<td>287,487</td>
</tr>
<tr>
<td>64</td>
<td>Abstract report/ or letter/</td>
<td>937,308</td>
</tr>
<tr>
<td>65</td>
<td>or/62–64</td>
<td>1,249,654</td>
</tr>
<tr>
<td>66</td>
<td>61 not 65</td>
<td>1,423,263</td>
</tr>
<tr>
<td>67</td>
<td>Clinical study/</td>
<td>110,015</td>
</tr>
<tr>
<td>68</td>
<td>Case control study/</td>
<td>90,041</td>
</tr>
<tr>
<td>69</td>
<td>Family study/</td>
<td>10,728</td>
</tr>
<tr>
<td>70</td>
<td>Longitudinal study/</td>
<td>75,499</td>
</tr>
<tr>
<td>71</td>
<td>Retrospective study/</td>
<td>392,205</td>
</tr>
<tr>
<td>72</td>
<td>Prospective study/</td>
<td>284,034</td>
</tr>
<tr>
<td>73</td>
<td>Randomized controlled trials/</td>
<td>69,857</td>
</tr>
<tr>
<td>74</td>
<td>72 not 73</td>
<td>282,076</td>
</tr>
<tr>
<td>75</td>
<td>Cohort analysis/</td>
<td>196,418</td>
</tr>
<tr>
<td>76</td>
<td>(Cohort adj (study or studies)).mp.</td>
<td>134,923</td>
</tr>
<tr>
<td>77</td>
<td>(Case control adj (study or studies)).tw.</td>
<td>82,778</td>
</tr>
<tr>
<td>78</td>
<td>(follow up adj (study or studies)).tw.</td>
<td>48,397</td>
</tr>
<tr>
<td>79</td>
<td>(observational adj (study or studies)).tw.</td>
<td>74,337</td>
</tr>
<tr>
<td>80</td>
<td>(epidemiologic$ adj (study or studies)).tw.</td>
<td>79,140</td>
</tr>
<tr>
<td>81</td>
<td>(cross sectional adj (study or studies)).tw.</td>
<td>98,828</td>
</tr>
<tr>
<td>82</td>
<td>or/67–71,74–81</td>
<td>1,348,850</td>
</tr>
<tr>
<td>83</td>
<td>10 and 42</td>
<td>50</td>
</tr>
<tr>
<td>84</td>
<td>10 and 66</td>
<td>1,170</td>
</tr>
<tr>
<td>85</td>
<td>10 and 82</td>
<td>1,635</td>
</tr>
<tr>
<td>86</td>
<td>83 or 84 or 85</td>
<td>2,352</td>
</tr>
<tr>
<td>87</td>
<td>animals/ not (humans/ and animals/)</td>
<td>1,240,115</td>
</tr>
<tr>
<td>88</td>
<td>86 not 87</td>
<td>2,351</td>
</tr>
</tbody>
</table>
3) Cochrane Library
검색일: 2015.4.13

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeSH descriptor: [Sepsis] explode all trees</td>
<td>3,103</td>
</tr>
<tr>
<td>2</td>
<td>MeSH descriptor: [Bacteremia] explode all trees</td>
<td>760</td>
</tr>
<tr>
<td>3</td>
<td>MeSH descriptor: [Systemic Inflammatory Response Syndrome] explode all trees</td>
<td>3,342</td>
</tr>
<tr>
<td>4</td>
<td>(sepsis or septic* or bacter?emia or Blood stream infecti* or shock syndrome or SIRS or MODS or Systemic Inflammatory Response Syndrome):ti,ab,kw</td>
<td>7,294</td>
</tr>
<tr>
<td>5</td>
<td>(multiple organ dysfunction syndrome or multiorgan dysfunction* or multi-organ dysfunction* or multiple organ failure* or multiorgan failure* or multi-organ failure*):ti,ab,kw</td>
<td>883</td>
</tr>
<tr>
<td>6</td>
<td>#1 or #2 or #3 or #4 or #5</td>
<td>8,823</td>
</tr>
<tr>
<td>7</td>
<td>MeSH descriptor: [Carbapenems]</td>
<td>413</td>
</tr>
<tr>
<td>8</td>
<td>(Carbapenem* or Meropenem* or Ertapenem* or Doripenem* or Biapenem* or Imipenem* or Panipenem*):ti,ab,kw</td>
<td>598</td>
</tr>
<tr>
<td>9</td>
<td>#7 or #8</td>
<td>712</td>
</tr>
<tr>
<td>10</td>
<td>#6 and #9</td>
<td>122</td>
</tr>
</tbody>
</table>

나. 국내 데이터베이스
1) KoreaMed
검색일: 2015.5.11

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>sepsis [ALL] AND Carbapenem [ALL]</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>sepsis [ALL] AND Meropenem [ALL]</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>sepsis [ALL] AND Ertapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>sepsis [ALL] AND Doripenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>sepsis [ALL] AND Biapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>sepsis [ALL] AND Imipenem [ALL]</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>sepsis [ALL] AND Panipenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Bacteremia [ALL] AND Carbapenem [ALL]</td>
<td>10</td>
</tr>
<tr>
<td>9</td>
<td>Bacteremia [ALL] AND Meropenem [ALL]</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>Bacteremia [ALL] AND Ertapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>Bacteremia [ALL] AND Doripenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>Bacteremia [ALL] AND Biapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>Bacteremia [ALL] AND Imipenem [ALL]</td>
<td>23</td>
</tr>
<tr>
<td>14</td>
<td>Bacteremia [ALL] AND Panipenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>Blood stream infection [ALL] AND Carbapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>Blood stream infection [ALL] AND Meropenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Blood stream infection [ALL] AND Ertapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Blood stream infection [ALL] AND Doripenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Blood stream infection [ALL] AND Biapenem [ALL]</td>
<td>0</td>
</tr>
</tbody>
</table>
ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>Blood stream infection [ALL] AND Imipenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Blood stream infection [ALL] AND Panipenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Septic [ALL] AND Carbapenem [ALL]</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>Septic [ALL] AND Meropenem [ALL]</td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Septic [ALL] AND Ertapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Septic [ALL] AND Doripenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Septic [ALL] AND Biapenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Septic [ALL] AND Imipenem [ALL]</td>
<td>3</td>
</tr>
<tr>
<td>28</td>
<td>Septic [ALL] AND Panipenem [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Total</td>
<td>67</td>
</tr>
</tbody>
</table>

2) 의학논문데이터베이스 KMbase

검색일: 2015. 5. 11

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((((((([ALL=Carbapenem] OR [ALL=Meropenem]) OR [ALL=Ertapenem]) OR [ALL=Doripenem]) OR [ALL=Biapenem]) OR [ALL=Imipenem]) OR [ALL=Panipenem]) AND ((([ALL=Sepsis] OR [ALL=Bacteremia]) OR [ALL=Bacteraemia]) OR [ALL=Blood stream infection]) OR [ALL=Septic])}</td>
<td>63</td>
</tr>
<tr>
<td>2</td>
<td>((([ALL=패혈증] OR [ALL=균혈증]) OR [ALL=패혈성 쇼크]) AND [ALL=카바페넴])</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>63</td>
</tr>
</tbody>
</table>

3) 한국교육학술정보원 RISS

검색일: 2015. 5. 11

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Carbapenem</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Meropenem</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Ertapenem</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Ertapenem</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Doripenem</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Biapenem</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Imipenem</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>전체: Sepsis OR 전체: Bacteremia OR 전체: Bacteraemia AND 전체: Panipenem</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>전체: Bloodstreaminfection(OR)전체:Septic(AND) 전체:Carbapenem</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>전체: Blood stream infection OR 전체: Septic AND 전체: Meropenem</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>전체: Blood stream infection OR 전체: Septic AND 전체: Ertapenem</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>전체: Blood stream infection OR 전체: Septic AND 전체: Doripenem</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>전체: Blood stream infection OR 전체: Septic AND 전체: Biapenem</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>전체: Blood stream infection OR 전체: Septic AND 전체: Imipenem</td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>전체: Blood stream infection OR 전체: Septic AND 전체: Panipenem</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>전체:패혈증(OR) 전체:균혈증(OR) 전체:패혈성쇼크(AND) 전체:카바페넴</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Total</td>
<td>49</td>
</tr>
</tbody>
</table>
4) 학술데이터베이스 KISS

검색일: 2015. 5. 11

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(전체=Sepsis OR 전체=Bacteremia OR 전체=Bacteraemia OR 전체=Blood stream infection OR 전체=Septic) AND (전체=Carbapenem)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(전체=Sepsis OR 전체=Bacteremia OR 전체=Bacteraemia OR 전체=Blood stream infection OR 전체=Septic) AND (전체=Meropenem)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(전체=Sepsis OR 전체=Bacteremia OR 전체=Bacteraemia OR 전체=Blood stream infection OR 전체=Septic) AND (전체=Ertapenem)</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>(전체=Sepsis OR 전체=Bacteremia OR 전체=Bacteraemia OR 전체=Blood stream infection OR 전체=Septic) AND (전체=Doripenem)</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(전체=Sepsis OR 전체=Bacteremia OR 전체=Bacteraemia OR 전체=Blood stream infection OR 전체=Septic) AND (전체=Biapenem)</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(전체=Sepsis OR 전체=Bacteremia OR 전체=Bacteraemia OR 전체=Blood stream infection OR 전체=Septic) AND (전체=Imipenem)</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>(전체=Sepsis OR 전체=Bacteremia OR 전체=Bacteraemia OR 전체=Blood stream infection OR 전체=Septic) AND (전체=Panipenem)</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>(전체=패혈증 OR 전체=균혈증 OR 전체=패혈성 쇼크) AND (전체=카바페넴)</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>Total</td>
<td>0</td>
</tr>
</tbody>
</table>

5) 과학기술학회마을 KisTi

검색일: 2015. 5. 11

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>((BI:SEPSIS OR BI:BACTEREMIA OR BI:BACTERAEMIA OR BI:BLOOD STREAM INFECTION OR BI:SEPTIC) AND (BI:CARBAPENEM OR BI:MEROPENEM OR BI:ERTAPENEM OR BI:DORIPENEM OR BI:BIAPENEM OR BI:IMIPENEM OR BI:PANIPENEM))</td>
<td>9</td>
</tr>
<tr>
<td>2</td>
<td>(BI:패혈증 OR BI:균혈증 OR BI:패혈성 쇼크) AND (BI:카바페넴)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>9</td>
</tr>
</tbody>
</table>

6) 국회전자도서관

검색일: 2015. 5. 11

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Carbapenem OR Meropenem OR Ertapenem OR Doripenem OR Biapenem OR Imipenem OR Panipenem) AND (Sepsis OR Bacteremia OR Bacteraemia OR Blood stream infection OR Septic)</td>
<td>26</td>
</tr>
<tr>
<td>2</td>
<td>(패혈증 OR 균혈증 OR 패혈성 쇼크) AND (카바페넴)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>26</td>
</tr>
</tbody>
</table>
7) 국립중앙도서관
검색일: 2015. 5. 11

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(Carbapenem OR Meropenem OR Ertapenem OR Doripenem OR Biapenem OR Imipenem OR Panipenem) AND (Sepsis OR Bacteremia OR Bacteraemia OR Blood stream infection OR Septic)</td>
<td>32</td>
</tr>
<tr>
<td>2</td>
<td>패혈증 균혈증 패혈성 쇼크 AND 카바페넴</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Total</td>
<td>32</td>
</tr>
</tbody>
</table>

1.2. 최종 선택문헌 목록

<table>
<thead>
<tr>
<th>선택문헌</th>
</tr>
</thead>
</table>
선택문헌

1.3. 배제문헌 목록

1. ESBL 생성 Enterobacteriaceae에 의한 균혈증 및 요로감염 생인 대상에 대한 연구가 아닌 문헌
2. carbapenem과 기타 항생제 치료간의 임상 성과를 보고하지 않은 문헌
3. 본 SR에서 사전에 정한 결과지표에 대해 보고하지 않은 문헌
4. RCT, 비교실험연구(CCT, 코호트, 환자-대조군 연구)가 아닌 문헌
5. 원저가 아닌 문헌
<table>
<thead>
<tr>
<th>배제문헌</th>
<th>배제사유</th>
</tr>
</thead>
</table>
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

200439806.

Chow KM, Li PKT. Acute kidney injury: Antibiotic therapy during CRRT–getting the dose

Giamarellou H. beta-Lactams without a suicide inhibitor. Clinical Microbiology and
<table>
<thead>
<tr>
<th>Reference</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Reference</th>
<th>PMCID/PMID</th>
</tr>
</thead>
</table>

생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

PubMed PMID: 25261419.

김영호, 성치남. 발열환자의 혈액배양으로부터 분리된 병원균의 항생제 감수성. 혈액배양학회. 1997:8, 1-10

서 Imipenem/Cilastatin(Tienam®)의 임상적 평가. 최신의학, 1993(12):89-96
1.4. GRADE 근거수준요약표

가. 경험적 요법
1) 카바페넴 vs 비카바페넴

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| No | observational studies | serious¹ | serious² | no serious indirectness | very serious³ | none | 145/684 (21.2%) | 351/1450 (24.2%) | OR 0.84 (0.54 to 1.32) | 31 fewer per 1000 (from 95 fewer to 54 more) | VERY LOW | CRITICAL |

| Sepsis-related mortality (follow-up mean 30 days) |

| No | observational studies | serious⁴ | very serious⁵ | no serious indirectness | very serious³ | none | 14/108 (13%) | 22/107 (20.6%) | OR 0.4 (0.06 to 2.79) | 112 fewer per 1000 (from 190 fewer to 214 more) | VERY LOW | IMPORTANT |
84% studies were not conducted to compare intervention and comparator

I²=60%

OIS criterion is not met, and CI fails to exclude important benefit or important harm

One, among 2 included studies, was not conducted to compare intervention and comparator

I²=81

2) 카바페넴 vs BL/:BLIs

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>247 more)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overall mortality (follow-up mean 30 days)

<table>
<thead>
<tr>
<th>No of studies</th>
<th>Design</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other considerations</th>
<th>Carbapenems</th>
<th>BL/BLIs</th>
<th>Relative (95%CI)</th>
<th>Absolute</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>observational</td>
<td>serious</td>
<td>no serious inconsistency</td>
<td>very serious</td>
<td>none</td>
<td>95/510 (18.6%)</td>
<td>99/534 (18.5%)</td>
<td>OR 1.01 (0.67 to 1.52)</td>
<td>2 more per 1000 (from 57 fewer to 76 more)</td>
<td>±OOO</td>
<td>VERY LOW</td>
<td></td>
</tr>
</tbody>
</table>

CRITICAL
80% studies were not conducted to compare intervention and comparator

OIS criterion is not met, and CI fails to exclude important benefit or important harm

3) 카바페넴 vs Non-BL/BLIs

<table>
<thead>
<tr>
<th>No of studies</th>
<th>Design</th>
<th>Risk of bias</th>
<th>Inconsistency</th>
<th>Indirectness</th>
<th>Imprecision</th>
<th>Other considerations</th>
<th>Carbapenems</th>
<th>Non-BL/BLIs</th>
<th>Relative (95%CI)</th>
<th>Absolute</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>observational studies</td>
<td>serious¹</td>
<td>serious²</td>
<td>none</td>
<td>very serious³</td>
<td>95/446 (21.3%)</td>
<td>223/782 (28.5%)</td>
<td>OR 0.73 (0.4 to 1.34)</td>
<td>60 fewer per 1000 (from 148 fewer to 63 more)</td>
<td>VERY LOW</td>
<td>IMPORTANT</td>
<td></td>
</tr>
</tbody>
</table>

92% studies were not conducted to compare intervention and comparator

OIS criterion is not met, but CI fails to exclude important benefit or important harm
4) 카바페넴 vs Cephalosporins

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Absolute</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
<td>Imprecision</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td>12</td>
<td>observational studies</td>
<td>serious</td>
<td>serious</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sepsis-related mortality (follow-up mean 30 days)</td>
<td>2</td>
<td>observational studies</td>
<td>serious</td>
<td>serious</td>
<td>no</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

92% studies were not conducted to compare intervention and comparator

12 catastrophe 72%

OLS criterion is not met, and CI fails to exclude important benefit
One study, among 2 studies, was not conducted to compare intervention and comparator

I²=73%

OIS criterion is not met, and CI fails to exclude important harm

5) Carbapenem vs Quinolones

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>12</td>
<td>observational studies</td>
<td>serious1</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td>102 fewer per 1000 (from 202 fewer to 73 more)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 All included studies were not conducted to compare intervention and comparator

2 OIS criterion is not met, and CI fails to exclude important benefit or important harm
6) 카바페넴 vs Aminoglycosides

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>5</td>
<td>observational studies</td>
<td>serious¹</td>
<td>n o serious inconsistency</td>
<td>n o serious indirectness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹All included studies were not conducted to compare intervention and comparator
²OIS criterion is not met, and CI fails to exclude important benefit or important harm
나. 확정적 요법
1) 카바페넴 vs 비카바페нем

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>21</td>
<td>observational studies</td>
<td>serious¹</td>
<td>n o</td>
<td>n o</td>
</tr>
<tr>
<td>14 days mortality (follow-up mean 14 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>observational studies</td>
<td>serious³</td>
<td>n o</td>
<td>n o</td>
</tr>
<tr>
<td>sepsis-related mortality (follow-up mean 30 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>observational studies</td>
<td>serious⁵</td>
<td>n o</td>
<td>n o</td>
</tr>
</tbody>
</table>
1) 71% were not conducted to compare intervention and comparator
2) OIS criterion is not met, CI fails to exclude important benefit
3) 50% studies were not conducted to compare intervention and comparator
4) OIS criterion is not met, but CI excludes no effect
5) 67% studies were not conducted to compare intervention and comparator

2) 카바페넴 vs BL.BLIs

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
</tr>
<tr>
<td>-------------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
</tr>
<tr>
<td>14</td>
<td>observational</td>
<td>serious¹</td>
</tr>
<tr>
<td>Quality assessment</td>
<td>No of patients</td>
<td>Effect</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
</tr>
<tr>
<td>2</td>
<td>observational studies</td>
<td>serious 3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

86% studies were not conducted to compare intervention and comparator

3OIS criterion is not met, and CI fails to exclude important benefit

4All included studies were not conducted to compare intervention and comparator

5$^2=79$

5OIS criterion is not met, and CI fails to exclude important benefit or important harm
3) 카바페넴 vs non-BL/BLIs

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>observational studies</td>
<td>serious ¹</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14days mortality (follow-up mean 14 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>observational studies</td>
<td>serious ³</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹85% studies were not conducted to compare intervention and comparator
²OIS criterion is not met, but CI excludes no effect
³50% studies were not conducted to compare intervention and comparator

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>observational studies</td>
<td>serious ¹</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14days mortality (follow-up mean 14 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>observational studies</td>
<td>serious ³</td>
<td>no serious inconsistency</td>
<td>no serious indirectness</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4) 카바페넴 vs Cephalosporins

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td>15</td>
<td>observational studies</td>
<td>serious</td>
<td>n o serious inconsistency</td>
</tr>
<tr>
<td>14 days mortality (follow-up mean 14 days)</td>
<td>4</td>
<td>observational studies</td>
<td>serious</td>
<td>n o serious inconsistency</td>
</tr>
<tr>
<td>Sepsis-related mortality (follow-up mean 30 days)</td>
<td>2</td>
<td>observational studies</td>
<td>serious</td>
<td>n o serious indirectness</td>
</tr>
</tbody>
</table>

⁴OIS criterion is not met, and CI fails to exclude important benefit
80% studies were not conducted to compare intervention and comparator
75% studies were not conducted to compare intervention and comparator
OIS is not met, but CI excludes no effect
50% studies were not conducted to compare intervention and comparator
\(\bar{I}^2 = 50\% \)

5) 카바파넴 vs Quinolones

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No of studies</td>
<td>Design</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>--------</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30)</td>
<td>9</td>
<td>observational studies</td>
</tr>
</tbody>
</table>

6) 카바페넴 vs Aminoglycosides

<table>
<thead>
<tr>
<th>Quality assessment</th>
<th>No of patients</th>
<th>Effect</th>
<th>Quality</th>
<th>Importance</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of studies</td>
<td>Design</td>
<td>Risk of bias</td>
<td>Inconsistency</td>
<td>Indirectness</td>
</tr>
<tr>
<td>5</td>
<td>observational studies</td>
<td>serious¹</td>
<td>n o serious inconsistency</td>
<td>n o serious indirectness</td>
</tr>
<tr>
<td>Overall mortality (follow-up mean 30 days)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹All included studies were not conducted to compare intervention and comparator
²OIS criterion is not met, and CI fails to exclude important benefit or important harm
2. 요로감염

2.1. 문헌 검색전략

가. 국외 데이터베이스

1) Ovid MEDLINE(R) In–Process & Other Non–Indexed Citations and Ovid MEDLINE(R) 1946 to Present

검색일: 2015.10.24

<table>
<thead>
<tr>
<th>번호</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>exp urinary tract infections/ or exp bacteriuria/ or exp pyelonephritis/</td>
<td>52,061</td>
</tr>
<tr>
<td>2</td>
<td>(urin$ or kidney$ or renal) adj5 (infect$ or inflam$).mp.</td>
<td>76,478</td>
</tr>
<tr>
<td>3</td>
<td>exp Cystitis/</td>
<td>8,412</td>
</tr>
<tr>
<td>4</td>
<td>exp Urethritis/</td>
<td>4,349</td>
</tr>
<tr>
<td>5</td>
<td>ureteritis.mp.</td>
<td>332</td>
</tr>
<tr>
<td>6</td>
<td>uti.mp.</td>
<td>6,329</td>
</tr>
<tr>
<td>7</td>
<td>or/1–6</td>
<td>103,167</td>
</tr>
<tr>
<td>8</td>
<td>exp Carbapenems/ or Carbapenem*.mp.</td>
<td>12,420</td>
</tr>
<tr>
<td>9</td>
<td>(Meropenem* or Ertapenem* or Doripenem* or Biapenem* or Imipenem* or Panipenem* or betamipron*).mp.</td>
<td>12,340</td>
</tr>
<tr>
<td>10</td>
<td>8 or 9</td>
<td>17,692</td>
</tr>
<tr>
<td>11</td>
<td>7 and 10</td>
<td>1,083</td>
</tr>
<tr>
<td>12</td>
<td>Meta–Analysis as Topic/</td>
<td>14,980</td>
</tr>
<tr>
<td>13</td>
<td>meta analy$.tw.</td>
<td>82,987</td>
</tr>
<tr>
<td>14</td>
<td>metaanaly$.tw.</td>
<td>1,524</td>
</tr>
<tr>
<td>15</td>
<td>Meta–Analysis/</td>
<td>61,011</td>
</tr>
<tr>
<td>16</td>
<td>(systematic adj (review$1 or overview$1)).tw.</td>
<td>72,386</td>
</tr>
<tr>
<td>17</td>
<td>exp Review Literature as Topic/</td>
<td>8,437</td>
</tr>
<tr>
<td>18</td>
<td>or/12–17</td>
<td>156,101</td>
</tr>
<tr>
<td>19</td>
<td>cochrane.ab.</td>
<td>39,391</td>
</tr>
<tr>
<td>20</td>
<td>embase.ab.</td>
<td>39,631</td>
</tr>
<tr>
<td>21</td>
<td>(psychlit or psyclit).ab.</td>
<td>895</td>
</tr>
<tr>
<td>22</td>
<td>(psychinfo or psycinfo).ab.</td>
<td>10,269</td>
</tr>
<tr>
<td>23</td>
<td>(cinahl or cinhal).ab.</td>
<td>13,224</td>
</tr>
<tr>
<td>24</td>
<td>science citation index.ab.</td>
<td>2,289</td>
</tr>
<tr>
<td>25</td>
<td>bids.ab.</td>
<td>383</td>
</tr>
<tr>
<td>26</td>
<td>cancerlit.ab.</td>
<td>608</td>
</tr>
<tr>
<td>27</td>
<td>or/19–26</td>
<td>63,110</td>
</tr>
<tr>
<td>28</td>
<td>reference list$.ab.</td>
<td>11,666</td>
</tr>
<tr>
<td>29</td>
<td>bibliograph$.ab.</td>
<td>12,977</td>
</tr>
<tr>
<td>30</td>
<td>hand–search$.ab.</td>
<td>4,632</td>
</tr>
<tr>
<td>31</td>
<td>relevant_journals.ab.</td>
<td>840</td>
</tr>
<tr>
<td>32</td>
<td>manual search$.ab.</td>
<td>2,852</td>
</tr>
<tr>
<td>33</td>
<td>or/28–32</td>
<td>29,542</td>
</tr>
<tr>
<td>연번</td>
<td>검색어</td>
<td>검색결과</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>34</td>
<td>selection criteria.ab.</td>
<td>22,519</td>
</tr>
<tr>
<td>35</td>
<td>data extraction.ab.</td>
<td>11,741</td>
</tr>
<tr>
<td>36</td>
<td>34 or 35</td>
<td>32,461</td>
</tr>
<tr>
<td>37</td>
<td>Review/</td>
<td>2,064,120</td>
</tr>
<tr>
<td>38</td>
<td>36 and 37</td>
<td>21,500</td>
</tr>
<tr>
<td>39</td>
<td>Comment/</td>
<td>670,507</td>
</tr>
<tr>
<td>40</td>
<td>Letter/</td>
<td>953,228</td>
</tr>
<tr>
<td>41</td>
<td>Editorial/</td>
<td>397,447</td>
</tr>
<tr>
<td>42</td>
<td>animal/</td>
<td>5,623,870</td>
</tr>
<tr>
<td>43</td>
<td>human/</td>
<td>14,476,730</td>
</tr>
<tr>
<td>44</td>
<td>41 not (42 and 43)</td>
<td>371,156</td>
</tr>
<tr>
<td>45</td>
<td>or/39-41,44</td>
<td>1,511,704</td>
</tr>
<tr>
<td>46</td>
<td>18 or 27 or 33 or 38</td>
<td>188,044</td>
</tr>
<tr>
<td>47</td>
<td>46 not 45</td>
<td>178,733</td>
</tr>
<tr>
<td>48</td>
<td>Randomized Controlled Trials as Topic/</td>
<td>103,516</td>
</tr>
<tr>
<td>49</td>
<td>randomized controlled trial/</td>
<td>414,252</td>
</tr>
<tr>
<td>50</td>
<td>Random Allocation/</td>
<td>86,522</td>
</tr>
<tr>
<td>51</td>
<td>Double Blind Method/</td>
<td>135,529</td>
</tr>
<tr>
<td>52</td>
<td>Single Blind Method/</td>
<td>21,471</td>
</tr>
<tr>
<td>53</td>
<td>clinical trial/</td>
<td>507,182</td>
</tr>
<tr>
<td>54</td>
<td>clinical trial, phase i.pt.</td>
<td>16,054</td>
</tr>
<tr>
<td>55</td>
<td>clinical trial, phase ii.pt.</td>
<td>25,720</td>
</tr>
<tr>
<td>56</td>
<td>clinical trial, phase iii.pt.</td>
<td>10,888</td>
</tr>
<tr>
<td>57</td>
<td>clinical trial, phase iv.pt.</td>
<td>1,089</td>
</tr>
<tr>
<td>58</td>
<td>controlled clinical trial.pt.</td>
<td>91,931</td>
</tr>
<tr>
<td>59</td>
<td>randomized controlled trial.pt.</td>
<td>414,252</td>
</tr>
<tr>
<td>60</td>
<td>multicenter study.pt.</td>
<td>197,548</td>
</tr>
<tr>
<td>61</td>
<td>clinical trial.pt.</td>
<td>507,182</td>
</tr>
<tr>
<td>62</td>
<td>exp Clinical Trials as topic/</td>
<td>302,575</td>
</tr>
<tr>
<td>63</td>
<td>or/48-62</td>
<td>1,125,482</td>
</tr>
<tr>
<td>64</td>
<td>(clinical adj trial$).tw.</td>
<td>248,824</td>
</tr>
<tr>
<td>65</td>
<td>((singl$ or doubl$ or treb$ or tripl$) adj (blind$3 or mask$3)).tw.</td>
<td>141,023</td>
</tr>
<tr>
<td>66</td>
<td>PLACEBOS/</td>
<td>34,048</td>
</tr>
<tr>
<td>67</td>
<td>placebo$.tw.</td>
<td>174,500</td>
</tr>
<tr>
<td>68</td>
<td>randomly allocated.tw.</td>
<td>19,741</td>
</tr>
<tr>
<td>69</td>
<td>(allocated adj2 random$).tw.</td>
<td>22,513</td>
</tr>
<tr>
<td>70</td>
<td>or/64-69</td>
<td>471,815</td>
</tr>
<tr>
<td>71</td>
<td>63 or 70</td>
<td>1,297,591</td>
</tr>
<tr>
<td>72</td>
<td>case report.tw.</td>
<td>228,019</td>
</tr>
<tr>
<td>73</td>
<td>letter/</td>
<td>953,228</td>
</tr>
<tr>
<td>74</td>
<td>historical article/</td>
<td>327,522</td>
</tr>
<tr>
<td>75</td>
<td>or/72-74</td>
<td>1,495,813</td>
</tr>
<tr>
<td>76</td>
<td>71 not 75</td>
<td>1,262,928</td>
</tr>
<tr>
<td>77</td>
<td>Epidemiologic studies/</td>
<td>6,422</td>
</tr>
<tr>
<td>78</td>
<td>exp case control studies/</td>
<td>755,182</td>
</tr>
<tr>
<td>79</td>
<td>exp cohort studies/</td>
<td>1,502,138</td>
</tr>
<tr>
<td>80</td>
<td>Case control.tw.</td>
<td>89,966</td>
</tr>
</tbody>
</table>
2) Embase 1974 to 2015 Week 43

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>81</td>
<td>(cohort adj (study or studies)).tw.</td>
<td>108,997</td>
</tr>
<tr>
<td>82</td>
<td>Cohort analy$.tw.</td>
<td>4,522</td>
</tr>
<tr>
<td>83</td>
<td>(Follow up adj (study or studies)).tw.</td>
<td>40,320</td>
</tr>
<tr>
<td>84</td>
<td>(observational adj (study or studies)).tw.</td>
<td>56,391</td>
</tr>
<tr>
<td>85</td>
<td>Longitudinal.tw.</td>
<td>163,166</td>
</tr>
<tr>
<td>86</td>
<td>Retrospective.tw.</td>
<td>324,472</td>
</tr>
<tr>
<td>87</td>
<td>Cross sectional.tw.</td>
<td>205,535</td>
</tr>
<tr>
<td>88</td>
<td>Cross-sectional studies/</td>
<td>205,853</td>
</tr>
<tr>
<td>89</td>
<td>or/77–88</td>
<td>2,141,363</td>
</tr>
<tr>
<td>90</td>
<td>11 and 47</td>
<td>11</td>
</tr>
<tr>
<td>91</td>
<td>11 and 76</td>
<td>201</td>
</tr>
<tr>
<td>92</td>
<td>11 and 89</td>
<td>252</td>
</tr>
<tr>
<td>93</td>
<td>animals/ not (human/ and animals/)</td>
<td>4,036,988</td>
</tr>
<tr>
<td>94</td>
<td>90 or 91 or 92</td>
<td>425</td>
</tr>
<tr>
<td>95</td>
<td>94 not 93</td>
<td>422</td>
</tr>
</tbody>
</table>

검색일: 2015.10.24
<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>bids.ab.</td>
<td>490</td>
</tr>
<tr>
<td>24</td>
<td>or/16–23</td>
<td>77,003</td>
</tr>
<tr>
<td>25</td>
<td>reference lists.ab.</td>
<td>11,835</td>
</tr>
<tr>
<td>26</td>
<td>bibliograph$.ab.</td>
<td>16,508</td>
</tr>
<tr>
<td>27</td>
<td>hand–search$.ab.</td>
<td>5,427</td>
</tr>
<tr>
<td>28</td>
<td>manual search$.ab.</td>
<td>3,288</td>
</tr>
<tr>
<td>29</td>
<td>relevant journals.ab.</td>
<td>954</td>
</tr>
<tr>
<td>30</td>
<td>or/25–29</td>
<td>34,242</td>
</tr>
<tr>
<td>31</td>
<td>data extraction.ab.</td>
<td>14,240</td>
</tr>
<tr>
<td>32</td>
<td>selection criteria.ab.</td>
<td>22,942</td>
</tr>
<tr>
<td>33</td>
<td>31 or 32</td>
<td>35,825</td>
</tr>
<tr>
<td>34</td>
<td>review.pt.</td>
<td>2,110,177</td>
</tr>
<tr>
<td>35</td>
<td>33 and 34</td>
<td>17,549</td>
</tr>
<tr>
<td>36</td>
<td>letter.pt.</td>
<td>913,720</td>
</tr>
<tr>
<td>37</td>
<td>editorial.pt.</td>
<td>494,194</td>
</tr>
<tr>
<td>38</td>
<td>animal/</td>
<td>1,700,573</td>
</tr>
<tr>
<td>39</td>
<td>human/</td>
<td>16,332,606</td>
</tr>
<tr>
<td>40</td>
<td>38 not (38 and 39)</td>
<td>1,278,027</td>
</tr>
<tr>
<td>41</td>
<td>or/36–37,40</td>
<td>2,670,517</td>
</tr>
<tr>
<td>42</td>
<td>15 or 24 or 30 or 35</td>
<td>236,231</td>
</tr>
<tr>
<td>43</td>
<td>42 not 41</td>
<td>228,748</td>
</tr>
<tr>
<td>44</td>
<td>Clinical trial/</td>
<td>856,383</td>
</tr>
<tr>
<td>45</td>
<td>Randomized controlled trial/</td>
<td>389,224</td>
</tr>
<tr>
<td>46</td>
<td>Randomization/</td>
<td>68,435</td>
</tr>
<tr>
<td>47</td>
<td>Single blind procedure/</td>
<td>21,172</td>
</tr>
<tr>
<td>48</td>
<td>Double blind procedure/</td>
<td>126,863</td>
</tr>
<tr>
<td>49</td>
<td>Crossover procedure/</td>
<td>44,827</td>
</tr>
<tr>
<td>50</td>
<td>Placebo/</td>
<td>277,943</td>
</tr>
<tr>
<td>51</td>
<td>Randomized controlled trial$.tw.</td>
<td>125,683</td>
</tr>
<tr>
<td>52</td>
<td>Rct.tw.</td>
<td>18,609</td>
</tr>
<tr>
<td>53</td>
<td>Random allocation.tw.</td>
<td>1,502</td>
</tr>
<tr>
<td>54</td>
<td>Randomly allocated.tw.</td>
<td>23,756</td>
</tr>
<tr>
<td>55</td>
<td>Allocated randomly.tw.</td>
<td>2,087</td>
</tr>
<tr>
<td>56</td>
<td>(allocated adj2 random).tw.</td>
<td>820</td>
</tr>
<tr>
<td>57</td>
<td>Single blind$.tw.</td>
<td>16,769</td>
</tr>
<tr>
<td>58</td>
<td>Double blind$.tw.</td>
<td>162,289</td>
</tr>
<tr>
<td>59</td>
<td>((treble or triple) adj blind$).tw.</td>
<td>521</td>
</tr>
<tr>
<td>60</td>
<td>Placebo$.tw.</td>
<td>227,925</td>
</tr>
<tr>
<td>61</td>
<td>Prospective study/</td>
<td>311,599</td>
</tr>
<tr>
<td>62</td>
<td>or/44–61</td>
<td>1,534,255</td>
</tr>
<tr>
<td>63</td>
<td>Case study/</td>
<td>34,297</td>
</tr>
<tr>
<td>64</td>
<td>Case report.tw.</td>
<td>302,205</td>
</tr>
<tr>
<td>65</td>
<td>Abstract report/ or letter/</td>
<td>960,572</td>
</tr>
<tr>
<td>66</td>
<td>or/63–65</td>
<td>1,290,501</td>
</tr>
<tr>
<td>67</td>
<td>62 not 66</td>
<td>1,493,741</td>
</tr>
<tr>
<td>68</td>
<td>Clinical study/</td>
<td>115,346</td>
</tr>
<tr>
<td>69</td>
<td>Case control study/</td>
<td>99,166</td>
</tr>
<tr>
<td>연번</td>
<td>검색어</td>
<td>검색결과</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------</td>
</tr>
<tr>
<td>70</td>
<td>Family study/</td>
<td>10,964</td>
</tr>
<tr>
<td>71</td>
<td>Longitudinal study/</td>
<td>82,514</td>
</tr>
<tr>
<td>72</td>
<td>Retrospective study/</td>
<td>432,803</td>
</tr>
<tr>
<td>73</td>
<td>Prospective study/</td>
<td>311,559</td>
</tr>
<tr>
<td>74</td>
<td>Randomized controlled trials/</td>
<td>85,652</td>
</tr>
<tr>
<td>75</td>
<td>73 not 74</td>
<td>309,175</td>
</tr>
<tr>
<td>76</td>
<td>Cohort analysis/</td>
<td>220,515</td>
</tr>
<tr>
<td>77</td>
<td>(Cohort adj (study or studies)).mp.</td>
<td>150,435</td>
</tr>
<tr>
<td>78</td>
<td>(Case control adj (study or studies)).tw.</td>
<td>88,969</td>
</tr>
<tr>
<td>79</td>
<td>(follow up adj (study or studies)).tw.</td>
<td>50,460</td>
</tr>
<tr>
<td>80</td>
<td>(observational adj (study or studies)).tw.</td>
<td>82,615</td>
</tr>
<tr>
<td>81</td>
<td>(epidemiologic$ adj (study or studies)).tw.</td>
<td>82,822</td>
</tr>
<tr>
<td>82</td>
<td>(cross sectional adj (study or studies)).tw.</td>
<td>109,681</td>
</tr>
<tr>
<td>83</td>
<td>or/68-72,75-82</td>
<td>1,468,987</td>
</tr>
<tr>
<td>84</td>
<td>11 and 43</td>
<td>69</td>
</tr>
<tr>
<td>85</td>
<td>11 and 67</td>
<td>696</td>
</tr>
<tr>
<td>86</td>
<td>11 and 83</td>
<td>828</td>
</tr>
<tr>
<td>87</td>
<td>84 or 85 or 86</td>
<td>1,289</td>
</tr>
<tr>
<td>88</td>
<td>animals/ not (humans/ and animals/)</td>
<td>1,221,789</td>
</tr>
<tr>
<td>89</td>
<td>87 not 88</td>
<td>1,288</td>
</tr>
</tbody>
</table>

3) Cochrane Library

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MeSH descriptor:[Urinary Tract Infections] explode all trees</td>
<td>2,093</td>
</tr>
<tr>
<td>2</td>
<td>MeSH descriptor:[Bacteriuria] explode all trees</td>
<td>458</td>
</tr>
<tr>
<td>3</td>
<td>MeSH descriptor:[Pyuria] explode all trees</td>
<td>34</td>
</tr>
<tr>
<td>4</td>
<td>MeSH descriptor:[Pyelonephritis] explode all trees</td>
<td>187</td>
</tr>
<tr>
<td>5</td>
<td>(urin* or kidney* orenal*) near/3 (infect* or inflam*):ti,ab,kw</td>
<td>6,021</td>
</tr>
<tr>
<td>6</td>
<td>cystitis:ti,ab,kw</td>
<td>862</td>
</tr>
<tr>
<td>7</td>
<td>urethritis:ti,ab,kw</td>
<td>499</td>
</tr>
<tr>
<td>8</td>
<td>ureteritis:ti,ab,kw</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>uti:ti,ab,kw</td>
<td>691</td>
</tr>
<tr>
<td>10</td>
<td>#1 or #2 or #3 or #4or #5 or #6 or #7 or #8 or #9</td>
<td>7,478</td>
</tr>
<tr>
<td>11</td>
<td>MeSH descriptor:[Carbapenems] explode all trees</td>
<td>415</td>
</tr>
<tr>
<td>12</td>
<td>(Meropenemor Ertapenem or Doripenem* or Biapenem* or Imipenem* or Panipenem* or orbetamipron*):ti,ab,kw</td>
<td>803</td>
</tr>
<tr>
<td>13</td>
<td>#11 or #12</td>
<td>837</td>
</tr>
<tr>
<td>14</td>
<td>#10 and #13</td>
<td>89</td>
</tr>
</tbody>
</table>
나. 국내 데이터베이스

1) KoreaMed

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Urinary tract infect* [ALL] AND Carbapenem* [ALL]</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Urinary tract infect* [ALL] AND Meropenem* [ALL]</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>Urinary tract infect* [ALL] AND Ertapenem* [ALL]</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>Urinary tract infect* [ALL] AND Doripenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>Urinary tract infect* [ALL] AND Biapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>Urinary tract infect* [ALL] AND Imipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>Urinary tract infect* [ALL] AND Panipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Urinary tract infect* [ALL] AND betamipron* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>UTI [ALL] AND Carbapenem* [ALL]</td>
<td>2</td>
</tr>
<tr>
<td>10</td>
<td>UTI [ALL] AND Meropenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>UTI [ALL] AND Ertapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>UTI [ALL] AND Doripenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>UTI [ALL] AND Biapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>UTI [ALL] AND Imipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>UTI [ALL] AND Panipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>UTI [ALL] AND betamipron* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>Ureteritis* [ALL] AND Carbapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>Ureteritis* [ALL] AND Meropenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Ureteritis* [ALL] AND Ertapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>Ureteritis* [ALL] AND Doripenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>Ureteritis* [ALL] AND Biapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>Ureteritis* [ALL] AND Imipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>Ureteritis* [ALL] AND Panipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>Ureteritis* [ALL] AND betamipron* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>25</td>
<td>Cystitis* [ALL] AND Carbapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>Cystitis* [ALL] AND Meropenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>27</td>
<td>Cystitis* [ALL] AND Ertapenem* [ALL]</td>
<td>1</td>
</tr>
<tr>
<td>28</td>
<td>Cystitis* [ALL] AND Doripenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>Cystitis* [ALL] AND Biapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>Cystitis* [ALL] AND Imipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>Cystitis* [ALL] AND Panipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>32</td>
<td>Cystitis* [ALL] AND betamipron* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>Pyelonephritis* [ALL] AND Carbapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>34</td>
<td>Pyelonephritis* [ALL] AND Meropenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>35</td>
<td>Pyelonephritis* [ALL] AND Ertapenem* [ALL]</td>
<td>1</td>
</tr>
<tr>
<td>36</td>
<td>Pyelonephritis* [ALL] AND Doripenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>37</td>
<td>Pyelonephritis* [ALL] AND Biapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>38</td>
<td>Pyelonephritis* [ALL] AND Imipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>39</td>
<td>Pyelonephritis* [ALL] AND Panipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>Pyelonephritis* [ALL] AND betamipron* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>41</td>
<td>Urethritis* [ALL] AND Carbapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>42</td>
<td>Urethritis* [ALL] AND Meropenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>43</td>
<td>Urethritis* [ALL] AND Ertapenem* [ALL]</td>
<td>0</td>
</tr>
</tbody>
</table>
부록 . Ⅵ

2) 의학논문데이터베이스 KMbase

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>Urethritis* [ALL] AND Doripenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>Urethritis* [ALL] AND Biapenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>Urethritis* [ALL] AND Imipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>Urethritis* [ALL] AND Panipenem* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td>48</td>
<td>Urethritis* [ALL] AND betamipron* [ALL]</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>55</td>
</tr>
</tbody>
</table>

검색일: 2015. 5. 8

3) 한국교육학술정보원 RISS

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>요로감염 AND 카바페넴</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>요관염 AND 카바페넴</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>세균뇨 AND 카바페넴</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>방광염 AND 카바페넴</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>신우신염 AND 카바페넴</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>요도염 AND 카바페넴</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>Total (‘국내발표논문’으로 제한)</td>
<td>55</td>
</tr>
</tbody>
</table>

검색일: 2015. 5. 8
ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Doripenem</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Biapenem</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Imipenem</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Panipenem</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND betamipron</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Total ("국내학술지논문"으로 제한)</td>
<td>9</td>
</tr>
</tbody>
</table>

4) 학술데이터베이스 KISS

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>요로감염 요관염 세균뇨 방광염 신우신염 요도염 (BI : OR OR OR OR OR) AND (BI : 카바페넴 :)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(BI : URINARY TRACT INFECTION OR UTI OR URETERITIS OR CYSTITIS OR PYELONEPHRITIS OR URETHRITIS) AND (BI : CARBAPENEM* OR MEROPENEM* OR ERTAPENEM* OR DORIPENEM* OR BIAPENEM* OR Imipenem* OR PANIPENEM* OR betamipron)</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND Carbapenem</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND Meropenem</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND Ertapenem</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND Doripenem</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND Biapenem</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND Imipenem</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND Panipenem</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>(Urinary tract infection OR UTI OR Ureteritis) AND betamipron</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Carbapenem</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Meropenem</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Ertapenem</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Doripenem</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Biapenem</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Imipenem</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND Panipenem</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>(Cystitis OR Pyelonephritis OR Urethritis) AND betamipron</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>Total</td>
<td>6</td>
</tr>
</tbody>
</table>

5) 과학기술학회마을 KisTi

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(BI : 요로감염 OR 요관염 OR 세균뇨 OR 방광염 OR 신우신염 OR 요도염) AND (BI : 카바페넴)</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>(BI : URINARY TRACT INFECTION* OR UTI OR URETERITIS* OR CYSTITIS* OR PYELONEPHRITIS* OR URETHRITIS*) AND (BI : CARBAPENEM* OR MEROPENEM* OR ERTAPENEM* OR DORIPENEM* OR BIAPENEM* OR Imipenem* OR PANIPENEM* OR betamipron)</td>
<td>0</td>
</tr>
</tbody>
</table>

174
부록. Ⅵ

6) 국회전자도서관

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Total (‘학술기사’로 제한)</td>
<td>0</td>
</tr>
</tbody>
</table>

검색일: 2015. 5. 8

7) 국립중앙도서관

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Total (‘학술기사’로 제한)</td>
<td>0</td>
</tr>
</tbody>
</table>

검색일: 2015. 5. 8

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>BETAMIPRON*</td>
<td>0</td>
</tr>
</tbody>
</table>

6) 국회전자도서관

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Total (‘학술기사’로 제한)</td>
<td>20</td>
</tr>
</tbody>
</table>

검색일: 2015. 5. 8

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Total (‘학술기사’로 제한)</td>
<td>0</td>
</tr>
</tbody>
</table>

7) 국립중앙도서관

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Total (‘학술기사’로 제한)</td>
<td>0</td>
</tr>
</tbody>
</table>

검색일: 2015. 5. 8

<table>
<thead>
<tr>
<th>연번</th>
<th>검색어</th>
<th>검색결과</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Total (‘학술기사’로 제한)</td>
<td>0</td>
</tr>
</tbody>
</table>
2.2. 최종 선택문헌 목록

<table>
<thead>
<tr>
<th>선택문헌</th>
</tr>
</thead>
</table>
2.3. 배제문헌 목록

<table>
<thead>
<tr>
<th>배제문헌</th>
<th>배제사유</th>
</tr>
</thead>
<tbody>
<tr>
<td>배제문헌</td>
<td>배제사유</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>배제문헌</td>
<td>배제사유</td>
</tr>
<tr>
<td>---------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Naber KG, Savoy C, Salmen HC. Piperacillin 2 g/tazobactam 0.5 g is as effective as imipenem 0.5g/cilastatin 0.5 g for the treatment of acute uncomplicated pyelonephritis and complicated urinary tract infections. International journal of antimicrobial agents [Internet]. 2002: 19(2):95–103 pp. Available from: http://onlinelibrary.wiley.com/o/cochrane/clcentral/articles/015/CN-00378015/frame.html.</td>
<td>1</td>
</tr>
</tbody>
</table>
배재문헌

<table>
<thead>
<tr>
<th>배재사유</th>
</tr>
</thead>
<tbody>
<tr>
<td>배제문헌</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>김의종, 김재석, 이재규, 카바페넴 항생제의 주요 임상분리세균에 대한 항균력 대한화학요법학회지, 19,1(2001.2) pp.23-31.</td>
</tr>
<tr>
<td>김희연, 임승혁, 조혁진, 김재식, 하유신, 김두배, 홍성후. 요로감염증 환자의 치료에서 메로페넴(Meropenem)과 이미페넴/Cilastatin(Imipenem/Cilastatin)의 임상효과 및 안정성. 대한화학요법학회지, 17,1(99.2) pp.33-39.</td>
</tr>
<tr>
<td>이윤림, 이연영, 이호식. Ertapenem의 약물사용 평가. 병원약사회지 제30권 제1호 (2013. 2) pp.34-42.</td>
</tr>
</tbody>
</table>
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

<table>
<thead>
<tr>
<th>배제문헌</th>
<th>배제사유</th>
</tr>
</thead>
<tbody>
<tr>
<td>장철훈, 김순호. 요로 감염에서 분리된 세균의 균종과 감수성 검사 결과 분석. 부산의대학술지 36권 2호 331-340.</td>
<td>1</td>
</tr>
<tr>
<td>조윤주, 이은정, 최경민, 윤영인, 유창제, 김철중, 이현희, 김영길. 2차 병원에서의 지역 사회 획득 요로 감염의 원인균 및 항생제 감수성 분석. 소아감염 2010년 6월 제17권 제1호 pp.30-35.</td>
<td>1</td>
</tr>
</tbody>
</table>
3. 증례기록서

3.1. 균혈증
부록 3.1. 균혈증 증례기록서

증례기록서
(Case Report Forms)

ESBL 생성 장내세균에 의한 균혈증에서
카바페넴과 다른 항생제 대안치료법간
임상효과 비교연구

<table>
<thead>
<tr>
<th>과제 번호</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site No – Patient ID</td>
<td></td>
</tr>
<tr>
<td>생년월일 (YYYY/MM/DD)</td>
<td></td>
</tr>
<tr>
<td>작성일 (YYYY/MM/DD)</td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL

1.1. 조사일: 2015년 월 ___일
12. 소방: 사자: ___ (서)
1.3. 확인일: 2015년 ___월 ___일
14. 명구자: ___ (서)
1.5. 검토일: 2015년 ___월 ___일
16. 명토자: ___ (서)
선정/제외 및 스크리닝 기준(In/Exclusion, Screening Criteria)

선정 기준

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>血액 미생물 배양검사에서 ESBL 생성 E. coli 또는 K. pneumoniae 양성으로 판정된 입원환자</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Screening 기준

<table>
<thead>
<tr>
<th>배양검사 처방일자</th>
<th>yyyy/mm/dd</th>
</tr>
</thead>
</table>

제외 기준

<table>
<thead>
<tr>
<th>No</th>
<th>Yes</th>
<th>No</th>
<th>NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>만 18세 미만</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>현재 임신중인 환자</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>심내막염 (endocarditis) 또는 골수염 (osteomyelitis)인 환자</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

등록 여부

<table>
<thead>
<tr>
<th>에가 있는 여부</th>
</tr>
</thead>
<tbody>
<tr>
<td>예</td>
</tr>
<tr>
<td>아니오</td>
</tr>
</tbody>
</table>
I. 환자 기본 정보

1. 입원일: ________________ (yyyym/m/dd)

2. 배양검사 처방일: ________________ (yyyym/m/dd)
 배양검사 처방시간: _____ (hr) _____ (mins)
 배양검사 양성판정일: ________________ (yyyym/m/dd)
 배양검사 양성판정시간: _____ (hr) _____ (mins)

3. 퇴원일: ________________ (yyyym/m/dd)

4. 환자 성별: □ 남자 □ 여자
Ⅱ. 환자의 중증도

1. 동반상병(Charlson Comorbidity Index)

항생제 투여 전 의무기록을 참고하여 작성하여 주십시오.

□ 있음 (아래표 기록) □ 없음

<table>
<thead>
<tr>
<th>질병</th>
<th>과거력 유/무</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Tumor</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td></td>
<td>□ Non-metastatic □ Metastatic</td>
</tr>
<tr>
<td>Malignant Lymphoma</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Leukemia</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Peripheral Vascular Disease</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>질병</td>
<td>과거력 유/무</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Cerebrovascular Disease</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Dementia</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>COPD</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Connective Tissue Disease</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Peptic Ulcer Disease</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Moderate to Severe Chronic Kidney Disease</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>Hemiplegia</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
<tr>
<td>질병</td>
<td>과거력 유/무</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| Liver Disease | □ 예
| | □ Moderate to Severe |
| | □ 아니오 |
| | □ NA |
| AIDS | □ 예 |
| | □ 아니오 |
| | □ NA |
2. 최근 상태 및 치료력

<table>
<thead>
<tr>
<th>질환명</th>
<th>과거력</th>
</tr>
</thead>
</table>
| 수술 여부
(최근 3개월 이내) | □ 예
□ 아니오
□ 기타 ________ |
| Chemotherapy
(최근 3개월 이내) | □ 예
□ 아니오
□ 기타 ________ |
| Radiotherapy
(최근 3개월 이내) | □ 예
□ 아니오
□ 기타 ________ |
| 입원 여부
(최근 3개월 이내) | □ 예
□ 아니오
□ 기타 ________ |
| Immune suppressive agent 사용
(최근 3개월 이내) | □ 예
□ azathioprine
□ monoclonal antibody
□ MMF
□ CNI
□ Corticosteroids (2주 이상 혹은 20mg 이상)
□ 기타 ________ |
| 이전 30일 이내의 항생제 사용 | □ 예
□ 아니오
□ NA |
III. 감염관련 정보

1. 감염경로

 □ 1. 병원발병 의료관련감염 (Hospital-acquired infection)

 □ 2. 지역사회획득감염(Community-acquired infection)

 □ 3. 지역사회발생 의료관련감염 (Community-onset Healthcare-associated infection)
 □ 발병 전 90일 이내 입원
 □ 외래에서 정맥주사 또는 항암치료
 □ 요양원 또는 요양병원에 거주
 □ 30일 이내의 혈액투석
 □ 30일 이내의 자가 창상치료

2. 감염병소

 □ Primary bacteremia
 □ Catheter related infection
 □ Urinary tract infection
 □ Intra-abdominal infection
 □ Respiratory track infection
 □ Skin and soft tissue infection
 □ Bone and Joint infection
 □ CNS infection
 □ 기타 _______________________

3. 감염관련 중증도

<table>
<thead>
<tr>
<th>종류</th>
<th>과거력</th>
</tr>
</thead>
</table>

- 191 -
<table>
<thead>
<tr>
<th>SIRS</th>
<th>□ Temp</th>
<th>□ Heart Rate</th>
<th>□ Respiratory</th>
<th>□ WBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>호흡구 감소증</td>
<td>□ 있음</td>
<td>□ 없음</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lab value</td>
<td>PCT(procalcitonin)</td>
<td>□ 결과 측정치</td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>CRP (C-reactive protein)</td>
<td>□ 결과 측정치</td>
<td>□ NA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitt bacteraemia score(PBS)</td>
<td>□ Fever points</td>
<td>□ 점수</td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Hypotension points</td>
<td>□ 점수</td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ MV points</td>
<td>□ 점수</td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Cardia arrest points</td>
<td>□ 점수</td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Mental status points</td>
<td>□ 점수</td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ 총 점수</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acute Physiology and Chronic Health Evaluation (APACHE) II</td>
<td>□ ICU 입원함</td>
<td>□ ICU 입원안함</td>
<td>□ NA</td>
<td></td>
</tr>
</tbody>
</table>

ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구
<table>
<thead>
<tr>
<th>Score (if in ICU)</th>
<th>□ age</th>
<th>□ ____________ years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>Glasgow coma score</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>Temp</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>MAP</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>Heart rate</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>Resp rate</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>FiO2</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>PaO2</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>PaCO2</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>Arterial pH</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>Sodium</td>
<td>□ __________</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td></td>
</tr>
<tr>
<td>Potassium</td>
<td>□</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>NA</td>
<td>Creatinine</td>
</tr>
<tr>
<td></td>
<td>HA</td>
<td>Hematocrit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Severe organ system insufficiency or is immunocompromised</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□</td>
<td>총 점수</td>
</tr>
</tbody>
</table>

ESBL 생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

- 194 -
IV. 항생제 사용

항생제 사용 시작 일시
(yyyy/mm/dd) (hr) (mins)

항생제 사용 종료 일시
(yyyy/mm/dd) (hr) (mins)

<table>
<thead>
<tr>
<th>계열</th>
<th>성분</th>
<th>항생제 감수성</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>MIC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>S/I/R</td>
</tr>
<tr>
<td>☐ Carbapenem</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Meropenem</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Ertapenem</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Doripenem</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Biapenem</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Imipenem</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Panipenem</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ BL/BLIs</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Piperacillin-tazobactam</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Ampicillin-sulbactam</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Amoxicillin-clavulanic acid</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Ticarcillin-clavulanic acid</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Non-BL/BLIs</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ 4th generation Cephalosporins</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Cefepime</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Cefpirome</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Cefozopran</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Cefquinome</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Aminoglycoside</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Streptomycin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Tobramycin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Gentamicin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Kanamycin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Amikacin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Netilimicin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Isepamicin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Quinolones</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Ciprofloxacin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>☐ Levofloxacin</td>
<td></td>
<td>☐ NA</td>
</tr>
<tr>
<td>Medicine</td>
<td>Effect</td>
<td>Comment</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>Others</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>TMP-SMX</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>Colistin</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>3rd generation Cephalosporines</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>Ceftriazone</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>□</td>
<td>□ NA</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>□</td>
<td>□ NA</td>
</tr>
</tbody>
</table>
V. 결과변수

<table>
<thead>
<tr>
<th>종류</th>
<th>상세</th>
</tr>
</thead>
</table>
| 생존여부 | □ 생존
□ 사망
① 사망일자 ______/______/____(yyyy/mm/dd)
② 사망사유
□ 감염관련
□ 기타
□ 마지막 관찰 종료
□ 종료일자 ______/______/____(yyyy/mm/dd)
□ 전원
□ 퇴원 (회복)
□ 퇴원 (hopeless 퇴원) |
| 미생물학적 치료 결과 (첫번째 음전시간 또는 마지막 결과) | □ 검사결과 있음
□ 검사일자 ______/______/____(yyyy/mm/dd)
□ 검사시작시간 ______ (hr) ______ (mins)
□ 검사결과
□ 음성
□ 양성
□ 검사결과 없음 |
| 치료중 ICU 입원 여부 | □ 입원함
□ 입원하지 않음 |
| 항생제관련 합병증 발생 여부 | □ 치료약제 변경을 요구하는 과민반응 발생
□ 의심약제
□ 약물발진
□ 발열
□ 경련성발작(Seizure)
□ Encephalopathy |
<table>
<thead>
<tr>
<th>종류</th>
<th>상세</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ Anaphylaxis</td>
</tr>
<tr>
<td></td>
<td>□ 신독성</td>
</tr>
<tr>
<td></td>
<td>□ 간독성</td>
</tr>
<tr>
<td></td>
<td>□ 기타</td>
</tr>
<tr>
<td></td>
<td>□ 약물유발성 혈구감소증 (Drug-Induced cytopenia)</td>
</tr>
<tr>
<td></td>
<td>의심약제</td>
</tr>
<tr>
<td></td>
<td>□ CD diarrhea</td>
</tr>
<tr>
<td></td>
<td>의심약제</td>
</tr>
<tr>
<td></td>
<td>□ Others</td>
</tr>
</tbody>
</table>

치료관련 합병증 발생에 따른

<table>
<thead>
<tr>
<th>처방중단 여부</th>
<th>□ 중단함</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ 중단하지 않음</td>
</tr>
</tbody>
</table>
부록 3.2. 요로감염 증례기록서

증례기록서
(Case Report Forms)

ESBL 생성 장내세균에 의한 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

<table>
<thead>
<tr>
<th>과제 번호</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Site No – Patient ID</td>
<td></td>
</tr>
<tr>
<td>생년월일 (YYYY/MM/DD)</td>
<td></td>
</tr>
<tr>
<td>작성일 (YYYY/MM/DD)</td>
<td></td>
</tr>
</tbody>
</table>

CONFIDENTIAL

1.7. 조사일: 2015년 ___월 ___일	18. 조사자: (서명)________
1.9. 확인일: 2015년 ___월 ___일	11.0. 연구자: (서명)_______
1.11. 검토일: 2015년 ___월 ___일	11.2. 검토자: (서명)_______
생성 장내세균에 의한 균혈증 및 요로감염에서 카바페넴과 다른 항생제 대안치료법간 임상효과 비교연구

선정/제외 및 스크리닝 기준(In/Exclusion, Screening Criteria)

<table>
<thead>
<tr>
<th>선정 기준</th>
<th>Screening 기준</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 소변 미생물 배양검사에서 ESBL 생성 E. coli 또는 K. pneumoniae 양성으로 판정된 상부요로감염 입원환자</td>
<td>양성판정일자</td>
</tr>
<tr>
<td>2. 요로이외에 다른 감염 존재</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>제외 기준</th>
<th>등록 여부</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 만 18세 미만</td>
<td>예</td>
</tr>
<tr>
<td>2. 현재 임신중인 환자</td>
<td>아니오</td>
</tr>
</tbody>
</table>
I. 환자 기본 정보

1. 입원일: ________________ (yyyy/mm/dd)

2. 입원과: ________________

3. 배양검사 처방일: ________________ (yyyy/mm/dd)
 배양검사 처방시간: _____ (hr) _____ (mins)
 배양검사 양성판정일: ________________ (yyyy/mm/dd)
 배양검사 양성판정시간: _____ (hr) _____ (mins)

4. 퇴원일: ________________ (yyyy/mm/dd)

5. 환자 성별: □ 남자 □ 여자
Ⅱ. 환자의 중증도

1. 동반상병(Charlson Comorbidity Index)

항생제 투여 전 의무기록을 참고하여 작성하여 주십시오.

□ 있음 (아래표 기록) □ 없음

<table>
<thead>
<tr>
<th>질병</th>
<th>과거력 유/무</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid Tumor</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ Non-metastatic</td>
</tr>
<tr>
<td></td>
<td>□ Metastatic</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Malignant Lymphoma</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Leukemia</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Myocardial Infarction</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Congestive Heart Failure</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Peripheral Vascular Disease</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>질병</td>
<td>과거력 유/무</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Cerebrovascular Disease</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Dementia</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>COPD</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Connective Tissue Disease</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Peptic Ulcer Disease</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Diabetes Mellitus</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ Uncomplicated</td>
</tr>
<tr>
<td></td>
<td>□ End-organ damage</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Moderate to Severe Chronic Kidney Disease</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>Hemiplegia</td>
<td>□ 예</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
</tr>
<tr>
<td>질병</td>
<td>과거력 유/무</td>
</tr>
<tr>
<td>--------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| Liver Disease | □ 예
 □ Mild
 □ Moderate to Severe
 □ 아니오
 □ NA |
| AIDS | □ 예
 □ 아니오
 □ NA |
2. 요로감염 동반상병

<table>
<thead>
<tr>
<th>질병</th>
<th>과거력 유/무</th>
<th>기타</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neoplasm of the urinary tract</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
<tr>
<td>Gynecological pathology (myoma uterine, vaginal hypoplasia)</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
<tr>
<td>Benign prostatic hypertrophy</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
<tr>
<td>Nephrolithiasis</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
<tr>
<td>Presence of urethral catheter</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
<tr>
<td>History of UTIs (최근 1년 이내 3회 이상)</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
<tr>
<td>Structural or functional abnormalities of urinary tract</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
<tr>
<td>Suppurative complications (Renal abscess or focal nephritis)</td>
<td>□ 예</td>
<td>□ □ □</td>
</tr>
<tr>
<td></td>
<td>□ 아니오</td>
<td>□ NA</td>
</tr>
<tr>
<td></td>
<td>□ NA</td>
<td>□ NA</td>
</tr>
</tbody>
</table>
3. 최근 상태 및 치료력

<table>
<thead>
<tr>
<th>질환명</th>
<th>과거력</th>
</tr>
</thead>
<tbody>
<tr>
<td>수술 여부 (최근 3개월 이내)</td>
<td>□ 예 □ 아니오 □ 기타</td>
</tr>
<tr>
<td>Chemotherapy (최근 3개월 이내)</td>
<td>□ 예 □ 아니오 □ 기타</td>
</tr>
<tr>
<td>Radiotherapy (최근 3개월 이내)</td>
<td>□ 예 □ 아니오 □ 기타</td>
</tr>
<tr>
<td>입원 여부 (최근 3개월 이내)</td>
<td>□ 예 □ 아니오 □ 기타</td>
</tr>
<tr>
<td>Immune suppressive agent 사용 (최근 3개월 이내)</td>
<td>□ 예 □ azathioprine □ monoclonal antibody □ MMF □ CNI □ Corticosteroids (2주 이상 혹은 20mg 이상) □ 기타 □ 아니오 □ NA</td>
</tr>
<tr>
<td>이전 30일 이내의 항생제 사용</td>
<td>□ 예 □ 아니오 □ NA</td>
</tr>
</tbody>
</table>
III. 감염관련 정보

1. 감염경로

- 1. 병원발병 의료관련감염 (Hospital-acquired infection)

- 2. 지역사회획득감염 (Community-acquired infection)

- 3. 지역사회발생 의료관련감염 (Community-onset Healthcare-associated infection)
 - 발병 전 90일 이내 입원
 - 외래에서 정맥주사 또는 항암치료
 - 요양원 또는 요양병원에 거주
 - 30일 이내의 혈액투석
 - 30일 이내의 자가 창상치료

2. 감염관련 중증도

<table>
<thead>
<tr>
<th>종류</th>
<th>과거력</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIRS</td>
<td>□ Temp □ Heart Rate □ Respiratory □ WBC</td>
</tr>
<tr>
<td>균혈증 존재유무</td>
<td>□ 있음 □ 없음</td>
</tr>
<tr>
<td>호흡구 감소증</td>
<td>□ 있음 □ 없음</td>
</tr>
<tr>
<td>Lab value</td>
<td>PCT(procalcitonin)</td>
</tr>
<tr>
<td>CRP (C-reactive protein)</td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
</tr>
<tr>
<td>□ 결과 측정치 ____________</td>
<td>□ NA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Acute Physiology and Chronic Health Evaluation (APACHE) II Score (if in ICU)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>□ ICU 입원함 □ ICU 입원안함 □ NA</td>
<td></td>
</tr>
</tbody>
</table>

- □ age
 - ________________ years
 - □ NA
- □ Glasgow coma score
 - ________________
 - □ NA
- □ Temp
 - ________________
 - □ NA
- □ MAP
 - ________________
 - □ NA
- □ Heart rate
 - ________________
 - □ NA
- □ Resp rate
 - ________________
 - □ NA
- □ FiO2
 - ________________
 - □ NA
- □ PaO2
 - ________________
 - □ NA
- □ PaCO2
 - ________________
 - □ NA
| □ Arterial pH | □ ______________ |
| □ Sodium | □ ______________ |
| □ Potassium | □ ______________ |
| □ Creatinine | □ ______________ |
| □ Acute renal failure |
| □ Yes | □ No |
| □ Hematocrit | □ ______________ |
| □ WBC | □ ______________ |
| □ Severe organ system insufficiency or is immunocompromised |
| □ Yes |
| □ nonoperative or emergency postoperative |
| □ elective postoperative |
| □ No | □ NA |

□ 총 점수 ______________
IV. 항생제 사용

 항생제 사용 시작 일시 & (yyyy/mm/dd) & (hr) & (mins)
 항생제 사용 종료 일시 & (yyyy/mm/dd) & (hr) & (mins)

<table>
<thead>
<tr>
<th>계열</th>
<th>성분</th>
<th>항생제 감수성</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbapenem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Meropenem</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Ertapenem</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Doripenem</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Biapenem</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Imipenem</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Carbapenem</td>
<td>Panipenem</td>
<td>☐ NA</td>
</tr>
<tr>
<td>BL/BLIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL/BLIs</td>
<td>Piperacillin-tazobactam</td>
<td>☐ NA</td>
</tr>
<tr>
<td>BL/BLIs</td>
<td>Ampicillin-sulbactam</td>
<td>☐ NA</td>
</tr>
<tr>
<td>BL/BLIs</td>
<td>Amoxicillin-clavulanic acid</td>
<td>☐ NA</td>
</tr>
<tr>
<td>BL/BLIs</td>
<td>Ticarcillin-clavulanic acid</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Non-BL/BLIs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-BL/BLIs</td>
<td>4th generation Cephalosporins</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Non-BL/BLIs</td>
<td>Cefepime</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Non-BL/BLIs</td>
<td>Cefpirome</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Non-BL/BLIs</td>
<td>Cefozopran</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Non-BL/BLIs</td>
<td>Cefquinome</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Streptomycin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Tobramycin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Gentamicin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Kanamycin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Amikacin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Netilmicin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Aminoglycoside</td>
<td>Isepamicin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones</td>
<td>Ciprofloxacin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Levofloxacin</td>
<td>☐ NA</td>
</tr>
<tr>
<td>Drug</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Moxifloxacin</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>TMP-SMX</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Colistin</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Tigecycline</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3rd generation Cephalosporines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td></td>
<td>NA</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td></td>
<td>NA</td>
</tr>
</tbody>
</table>
V. 결과변수

<table>
<thead>
<tr>
<th>종류</th>
<th>상세</th>
</tr>
</thead>
</table>
| 생존여부 | □ 생존
□ 사망
① 사망일자 ______/_____/____(yyyy/mm/dd)
② 사망사유
□ 감염관련
□ 기타
□ 마지막 관찰 종료
① 종료일자 ______/_____/____(yyyy/mm/dd)
□ 전원
□ 퇴원 (회복)
□ 퇴원 (hopeless 퇴원) |
| 미생물학적 치료 결과
(첫번째 음전시간 또는 마지막 결과) | □ 검사결과 있음
□ 검사일자 ______/_____/____(yyyy/mm/dd)
□ 검사시작시간 ______ (hr) ______ (mins)
□ 검사결과
□ 음성 (-> 재발여부 표시)
□ 양성
□ 검사결과 없음 |
| 미생물학적 재발여부
(90일 이내) | □ 재발함 (다시 양성결과)
① 재발일자 ______/_____/____(yyyy/mm/dd)
□ 재발하지 않음 |
| 발열 (37.8도 이상) | □ 해소되지 않음
□ 해소됨
□ 발열기간: 총 _____ 시간 _____ 분
(양성검체처방시점부터 해소시점까지)
□ 해소되었다가 재발됨 |
| 항생제관련 합병증 발생 여부 | □ 치료약제 변경을 요구하는 과민반응 발생
□ 의심약제
□ 약물발진
□ 발열 |
<table>
<thead>
<tr>
<th>종류</th>
<th>상세</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ 경련성발작(Seizure)</td>
</tr>
<tr>
<td></td>
<td>□ Encephalopathy</td>
</tr>
<tr>
<td></td>
<td>□ Anaphylaxis</td>
</tr>
<tr>
<td></td>
<td>□ 신독성</td>
</tr>
<tr>
<td></td>
<td>□ 간독성</td>
</tr>
<tr>
<td></td>
<td>□ 기타 ________________</td>
</tr>
<tr>
<td></td>
<td>□ 약물유발성 혈구감소증 (Drug-Induced cytopenia)</td>
</tr>
<tr>
<td></td>
<td>의심약제 ________________</td>
</tr>
<tr>
<td></td>
<td>□ CD diarrhea</td>
</tr>
<tr>
<td></td>
<td>의심약제 ________________</td>
</tr>
<tr>
<td></td>
<td>□ Others ________________</td>
</tr>
</tbody>
</table>

치료관련 합병증 발생에 따른 치료중단 여부 | □ 중단함 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>□ 중단하지 않음</td>
</tr>
</tbody>
</table>
발행일 2015. 5. 31.
발행인 임태환
발행처 한국보건의료연구원
이 책은 한국보건의료연구원에 소유권이 있습니다. 한국보건의료연구원의 승인 없이 상업적인 목적으로 사용하거나 판매할 수 없습니다.

ISBN :